【 – 小学作文】
篇一:《六年级上册数学《圆》认识圆_知识点整理》
认识圆
一、本节学习指导
本节我们初步认识圆,掌握圆心、半径、直径的概念,并且自己要能根据已知的半径、直径画出圆。再者我们提到了简单轴对称图形,同学们把以前学习的这部分知识回忆巩固一下。本节有配套免费学习视频。
二、知识要点
1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。如下图中,中心的一点O。
一般用字母O表示。它到圆上任意一点的距离都相等.(画圆切忌别忘记标圆心0)
3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。如下图红色线。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。如下图蓝色线。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。(画圆给出半径标半径r=?,给出直径标直径d=?)
6、在同圆或等圆内,有无数条半径,有无数条直径。同圆中所有的半径、直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的
用字母表示为:d = 2r或r = 1。 2d或r=d÷2 2
8、轴对称图形:
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。 折痕所在的这条直线叫做对称轴。
9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。
10、常见图形的对称轴
只有1一条对称轴的图形有: 角、等腰三角形、等腰梯形、扇形、半圆。 只有2条对称轴的图形是:长方形
只有3条对称轴的图形是:等边三角形
只有4条对称轴的图形是:正方形;
有无数条对称轴的图形是:圆、圆环。
三、经验之谈:
画已知半径的圆时我们要借助圆规,圆规的使用很简单,相信同学们都没问题。如果已知的是直径,我们要把直径除以2换成半径,确定要圆心,然后才开始画圆。
篇二:《小学六年级圆的知识总结》
圆:
一、教学指导
这一章节我们要初步认识圆形的物体(车轮、井盖、脸盆等等),进而了解圆,掌握圆的圆心、半径、直径、周长、面积的概念及公式,并且自己要能根据已知的半径、直径画出圆,观察圆的对称性。
理解圆周率的意义,掌握圆周率的近似值。
二、知识要点
1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。如图中,中心的一点O。
一般用字母O表示。它到圆上任意一点的距离都相等.(画圆切忌别忘记标圆心0)
3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。同圆中所有的半径、直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。
用字母表示为:d = 2r或r = 或r=d÷2
8、圆周率:π=3.1415926(π=~3.14)
9、圆的周长:
圆的周长是指圆一周的长度
圆的周长公式:C=πd 或 C=2πr
10、圆的面积:
圆的面积是指圆所围成的平面部分的大小。
圆的面积公式:S=πr2
11、圆的对称性:
既是轴对称图形也是中心对称图形。
d212
篇三:《几何初步知识教学要求综述》
数学的内容不外乎数与形两大部分,小学数学教学的内容也不例外。新颁布的《九年义务教育全日制小学数学教学大纲(试用)》(下称新大纲)对几何初步知识的教学作了一些重要的改革,教学要求更加明确。现就我个人的体会,从历史的回顾、三点重要的改革以及具体的教学要求三个方面分别阐述,和广大老师们共同讨论。
一、历史的回顾
我国对几何学的研究有着悠久的历史,翻开二千多年前已经成书的《九章算术》看一看,书中对许多平面图形及其面积的求法已有详细的记载。首先,它把一些平面图形称之为田,如方田(指正方形)、直田(指长方形)、圭田(指三角形)、斜田(指梯形)。这里充分说明人们是在一系列测田亩、定四时的农业活动中,逐步形成一些几何形体概念的。同时,书中还记载了三角形的面积是半广以乘正从,这里讲的广是指矩形,正从是指高,意思是把三角形割补成矩形,取其底长的一半再乘高,便是三角形的面积;再看圆的面积,半周半径相乘得积步,积步是当时的面积单位平方步,就是说圆周的一半与半径相乘,用今日的圆面积公式表示,即。至于祖冲之的圆周率,更是早于印度半个世纪,早于欧洲一千多年。我国辉煌的几何学成就,是我国宝贵的文化遗产之一。
然而,几何作为一门学科开设,在我国基础教育,尤其是小学教育中,则是很晚的事了。一直到清政府制定的《奏定学堂章程》(1903年)中,才明确在小学设算术课,其中有一章和几何有关,就是求积,内容是田亩的算。
解放以后,随着科学技术的进步,几何初步知识在小学算术中所占的地位也逐步明确。1952年的《小学算术教学大纲(草案)》规定的内容是:直线、线段、直角、正方形和长方形(包括面积)、正方体和长方体(包括体积)。1956年的《小学算术教学大纲(修订草案)》又增加了角、三角形的认识及其面积等内容。1963年《全日制小学算术教学大纲(草案)》又增加了以下内容:垂线和平行线,圆(包括周长与面积),平行四边形和梯形(包括它们的面积),圆柱、圆锥、棱柱、棱锥(包括它们的面积);同时还学习一些最简单的作图和测量。1963年的大纲是学习几何知识最多的一个大纲。
经过十年动乱后,1978年在调查研究基础上,颁布了《全日制十年制学校小学数学教学大纲(试行草案)》,对1963年规定的内容作了调整,删去较难的棱柱、棱锥,增加了扇形。现行教学大纲(指1986年由国家教委正式制订的《全日制小学数学教学大纲》)规定的内容与1978年的相同。
综上所述,我们可以看到小学几何初步知识的内容是随着科技的进步和基础教育的发展而逐步增加、逐步完善的。因为学一些几何知识是适应小学生以后进一步学习以及将来参加生产建设的需要的,这是一个方面。而另一方面,还可以看到,几十年来,我国小学几何初步知识的教学仍始终未能完全突破以求积为中心的传统观念,忽视了空间观念的培养,而这个问题,则在新大纲中得到了较好的解决。
二、新大纲中的三点改革
(一)明确小学几何初步知识的性质直观几何(实验几何)。
从几何发展的历史中可以看到,人们对几何图形的认识首先根据生活、生活实践的经验,依靠直觉观察、反复实验而形成的(这一点在第一个问题中已经涉及)。很明确,不是靠后来人们整理时所运用的逻辑推理而形成的。再看一下,小学生的思维又正处在由直观表象思维为主向抽象逻辑思维为主的过渡阶段,他们对几何图形的认识还相当于人类早期认识几何的阶段。因此,在小学阶段学的应该属于直观几何,就是要通过他们自己的拼拼摆摆、折折叠叠、量量画画等实际操作,认识图形的某些特性,积累一定的空间观念。这样,可以为今后升入中学逐步学习论证几何作好准备。这里我想举一个例子说明。小学里学习三角形的内角和时,总是用撕角拼成一个平角,或是用量角器量出三个角的度数,以此说明其内角和等于180。这些方法看来是极为简单或者说是比较低级的,因为它的准确度是有限的。如果采用逻辑证
明,便可使人确信无疑。如下: