【 – 小学作文】
我的元旦假期800(一)
八年级数学元旦假期作业
(试卷满分:120分;考试时间:120分钟)
一、细心填一填(本大题共有10小题,每小题3分,共30分.) 1、16的算术平方根是2、点P(-3,4)到原点的距离是__________. 3、一次函数y2x的图像不经过第__________象限 .
4、0.0958精确到百分位是5、写出同时具备下列两个条件的一次函数关系式(写出一个即可)(1)y随x的增大而增大; (2)图像经过点(1,-2)
6、如图所示,正方形ABCD中,E、F是对角线AC上两点,连接BE、BF、DE、DF,则添加一个条件________________,可以判定四边形BEDF是菱形.
7、在△ABC中,∠C=90°,DE是AB
A=40
D B
第6题图
C
(第10题图)
第8题图
2π
8、如图所示的圆柱体中底面圆的半径是,高为2,若一只小虫从
A
点出发沿着圆柱体的
侧面爬行到
C点,则小虫爬行的最短路程是__________(结果保留根号)
9、我国是一个严重的缺水国家,大家都应珍惜水资源,节约用水,据测试,拧不紧的水龙头每秒滴下2滴水,每滴水约0.05毫升.小明同学洗手时,没把水龙头拧紧,当小明离开x秒后,水龙头滴y毫升的水,试写出y关于x的函数关系式__________.
10、某农场租用收割机收割小麦,甲收割机单独收割2天后,又调来乙收割机参与收割,直至完成800亩的收割任务.收割亩数与天数之间的函数关系如图所示,那么乙参与收割__________天.
二、精心选一选(本大题共有8小题,每小题3分,共24分.)
11、下列图形中,你认为既是中心对称图形又是轴对称图形的是( )
A B C D
12、在平面直角坐标系中位于第四象限内的点是 ( )
A、(-3,-2) B、(-3,2) C、(3,2) D、(3,-2)
2
13、下列实数,3,8,4,,0.1,0.010010001…(每两个1之间依次增加一个0),其中
3
3
无理数共有( )
A、2个 B、3个 C、4个 D、5个
14、如图,直线EF经过矩形ABCD对角线的交点O,分别交AB、CD于点E、F,那么图中阴影部分的面积是矩形ABCD的面积( )
A、
15
B、
14
C、
13
D、
110
15、若平行四边形的一边和一条对角线长都是10㎝,则另一条对角线长可以是( ) ..
A、5㎝
B、10㎝
C、20㎝ D、30㎝
16、如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为( )
A、4 B、6 C、16 D、55
第16题图
第14题图 第18题图
17、已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数yxk的图象大致是图中的( )
18、用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图像
(如图所示),则所解的二元一次方程组是( )
xy202xy10A. B.
3x2y103x2y10
C.
2xy103x2y50
D.
xy202xy10
三、认真答一答(本大题共5小题,共36分.)
19、(本小题满分7分) ①计算
②解方程:4x90
20、(本小题满分7分)在边长为1的方格纸中建立直角坐标系xoy,O、A、B三点均为格点.
2
916
8(32)
2
(1)直接写出线段OB的长;
(2)将△OAB绕点O沿逆时针方向旋转90°得到△OA′B′.请你画出△OA′B′,并求在旋转过程中,点B所经过的路径的长度.
21、(本小题满分7分)甲乙两人同时登西山,甲、乙两人距地面的高度y(米)与登山时
间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
(1)甲登山的速度是每分钟______米,乙在A地提速时距地面的高度b为______米. (2)若乙提速后,乙的速度是甲登山速度的3倍,请分别求出甲、乙二人登山全过程中,
登山时距地面的高度y(米)与登山时间x(分)之间的函数关系式. (3)登山多长时间时,乙追上了甲?此时乙距A地的高度为多少米?
22、(本小题满分7分)2009年夏天,某省由于持续高温和连日无雨,水库蓄水量普遍下降,如图是该省某水库的蓄水量v(万立方米)与干旱持续时间t(天)之间的关系图,请根据图形回答下列问题:
⑴该水库原蓄水量为多少万立方米?持续干旱10天后,水库蓄水量为多少万立方米? ⑵水库的蓄水量小于400万立方米时,将发警报,请问:持续干旱多少天后,将发出严报?
⑶按此规律,持续干旱多少天时,水库将干
23、(本小题满分8分)如图,在□ABCD中,E为BC的中点,连接AE并延长交DC的延
长线于点F.
(1)试说明:AB=CF;
出严重干旱重干旱警涸?
)
(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.
D
A
C
B
F
第23题
四、实践与探索(本大题只有1小题,满分10分.) 24、(本小题满分10分)如图,在平面直角坐标系中,四边形OABC为直角梯形,OA∥BC,
BC=14,A(16,0),C(0,2).
(1)如图①,若点P、Q分别从点C、A同时出发,点P以每秒2个单位的速度由C向B运
动,点Q以每秒4个单位的速度由A向O运动,当点Q停止运动时,点P也停止运动.设运动时间为t秒(0≤t≤4).
①求当t为多少时,四边形PQAB为平行四边形?
②求当t为多少时,直线PQ将梯形OABC分成左右两部分的比为1:2,并求出此时直线PQ
的解析式.
(2)如图②,若点P、Q分别是线段BC、AO上的任意两点(不与线段BC、AO的端点重
合),且四边形OQPC面积为10,试说明直线PQ一定经过一定点,并求出该定点的坐标.
x
x
①
②