【 – 小学作文】
篇一:《平行线性质练习题》
七年级数学《平行线的性质》同步练习题(一)
一、基础过关:
1.如图1,a∥b,a、b被c所截,得到∠1=∠2的依据是( )
A.两直线平行,同位角相等 B.两直线平行,内错角相等
C.同位角相等,两直线平行 D.内错角相等,两直线平行
(1) (2) (3)
2.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为( )
A.互相垂直 B.互相平行 C.相交 D.无法确定
3.如图2,AB∥CD,那么( )
A.∠1=∠4 B.∠1=∠3 C.∠2=∠3 D.∠1=∠5
4.如图3,在平行四边形ABCD中,下列各式不一定正确的是( )
A.∠1+∠2=180° B.∠2+∠3=180°
C.∠3+∠4=180° D.∠2+∠4=180°
5.如图4,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为( )
A.30° B.60° C.90° D.120°
(4) (5)
6.如图5,AB∥EF,BC∥DE,则∠E+∠B的度数为________.
7.如图,AB∥CD,AE、DF分别是∠BAD、∠CDA的角平分线,AE与DF平行吗?为什么?
8.(综合题)如图,已知∠AMB=∠EBF,∠BCN=∠BDE,求证:∠CAF=∠AFD.
9.(应用题)如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角A是120°,第二次拐的角B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,问∠C是多少度?说明你的理由.
10.(创新题)(1)如图,若AB∥DE,∠B=135°,∠D=145°,你能求出∠C的度数吗?
(2)在AB∥DE的条件下,你能得出∠B、∠C、∠D之间的数量关系吗?并说明理由.
11.(1)如图6,已知AB∥CD,直线L分别交AB、CD于点E、F,EG平分∠BEF,若∠EFG=40则∠EGF的度数是( )
A.60° B.70° C.80° D.90°
(6) (7)
(2)已知:如图7,AB∥DE,∠E=65°,则∠B+∠C的度数是( )
A.135° B.115° C.65° D.35°
答案:
1.A 2.B 3.D 4.D 5.B
6.180° 点拨:∵AB∥EF,∴∠B=∠CFG.
∵BC∥DE,
∴∠E+∠BFE=180°.
∵∠GFC=∠BFE,
∴∠B+∠E=180°.
7.解:平行.
∵AB∥CD,
∴∠BAD=∠CDA(两直线平行,内错角相等).
∵AE、DF分别是∠BAD、∠CDA的平分线,
∴∠EAD=11∠BAD,∠FDA=∠CDA. 22
∴∠EAD=∠FDA.
∴AE∥DF(内错角相等,两直线平行).{平行线的性质}.
8.证明:∵∠AMB=∠DMN,又∠ENF=∠AMB,∴∠DMN=∠ENF,
∴BD∥CE.∴∠BDE+∠DEC=180°.
又∠BDE=∠BCN,∴∠BCN+∠CED=180°,
∴BC∥DE,∴∠CAF=∠AFD.{平行线的性质}.
点拨:本题重点是考查两直线平行的判定与性质.
9.解:∠C=150°.
理由:如答图,过点B作BE∥AD,则∠ABE=∠A=120°(两直线平行,内错角相等). ∴∠CBE=∠ABC-∠ABE=150°-120°=30°.
∵BE∥AD,CF∥AD,
∴BE∥CF(平行于同一条直线的两直线平行).
∴∠C+∠CBE=180°(两直线平行,同旁内角互补).{平行线的性质}.
∴∠C=180°-∠CBE=180°-30°=150°.
10.解:(1)如答图5-3-2,过点C作CF∥AB,
则∠1=180°-∠B=180°-135°=45°(两直线平行,同旁内角互补).
∵CF∥AB,DE∥AB,
∴CF∥DE(平行于同一条直线的两直线平行).
∴∠2=∠180°-∠D=180°-145°=35°(两直线平行,同旁内角互补).
∴∠BCD=∠1+∠2=45°+35°=80°.
(2)∠B+∠C+∠D=360°.
理由:如答图5-3-2过点C作CF∥AB,得∠B+∠1=180°(两直线平行,同旁内角互补).
∵CF∥AB,DE∥AB,
∴CF∥DE(平行于同一条直线的两直线平行).
∴∠D+∠2=180°(两直线平行,同旁内角互补).
∴∠B+∠1+∠2+∠D=360°.
即∠B+∠BCD+∠D=360°.
点拨:辅助线CF是联系AB与DE的纽带.
11.(1)B (2)C
篇二:《平行线的性质试题及答案》
平行线的性质试题及答案
1.如图1,a∥b,a、b被c所截,得到∠1=∠2的依据是( ) A.两直线平行,同位角相等 B.两直线平行,内错角相等 C.同位角相等,两直线平行 D.内错角相等,两直线平行
(1) (2) (3) ( )
A.互相垂直 B.互相平行 C.相交 D.无法确定 3.如图2,AB∥CD,那么( )
A.∠1=∠4 B.∠1=∠3 C.∠2=∠3 D.∠1=∠5 4.如图3,在平行四边形ABCD中,下列各式不一定正确的是( ) A.∠1+∠2=180° B.∠2+∠3=180°
C.∠3+∠4=180° D.∠2+∠4=180°
5.如图4,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为( )
A.30° B.60° C.90° D.120°
2.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为
(4) (5) 6.如图5,AB∥EF,BC∥DE,则∠E+∠B的度数为________. 7.如图,AB∥CD,AE、DF分别是∠BAD、∠CDA的角平分线,为什么?
AE与DF平行吗?
8.(综合题)如图,已知∠AMB=∠EBF,∠BCN=∠BDE,求证:∠CAF=∠AFD.
9.(应用题)如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角A是120°,第二次拐的角B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,问∠C是多少度?说明你的理由.{平行线的性质}.
10.(创新题)(1)如图,若AB∥DE,∠B=135°,∠D=145°,你能求出∠C的度数吗?
(2)在AB∥DE的条件下,你能得出∠B、∠C、∠D之间的数量关系吗?并说明理由.
11.(1)如图6,已知AB∥CD,直线L分别交AB、CD于点E、F,EG平分∠BEF,若∠EFG=40则∠EGF的度数是( )
A.60° B.70° C.80° D.90°
(6) (7)
(2)已知:如图7,AB∥DE,∠E=65°,则∠B+∠C的度数是( )
A.135° B.115° C.65° D.35° 答案:
1.A 2.B 3.D 4.D 5.B
6.180° 点拨:∵AB∥EF,∴∠B=∠CFG. ∵BC∥DE,
∴∠E+∠BFE=180°. ∵∠GFC=∠BFE, ∴∠B+∠E=180°. 7.解:平行. ∵AB∥CD,
∴∠BAD=∠CDA(两直线平行,内错角相等). ∵AE、DF分别是∠BAD、∠CDA的平分线, ∴∠EAD=
11
∠BAD,∠FDA=∠CDA. 22{平行线的性质}.
∴∠EAD=∠FDA.
∴AE∥DF(内错角相等,两直线平行).
8.证明:∵∠AMB=∠DMN,又∠ENF=∠AMB,∴∠DMN=∠ENF, ∴BD∥CE.∴∠BDE+∠DEC=180°. 又∠BDE=∠BCN,∴∠BCN+∠CED=180°, ∴BC∥DE,∴∠CAF=∠AFD.{平行线的性质}.
点拨:本题重点是考查两直线平行的判定与性质. 9.解:∠C=150°.
理由:如答图,过点B作BE∥AD,则∠ABE=∠A=120°(两直线平行,内错角相等). ∴∠CBE=∠ABC-∠ABE=150°-120°=30°. ∵BE∥AD,CF∥AD,
∴BE∥CF(平行于同一条直线的两直线平行). ∴∠C+∠CBE=180°(两直线平行,同旁内角互补).
∴∠C=180°-∠CBE=180°-30°=150°.
10.解:(1)如答图5-3-2,过点C作CF∥AB,
则∠1=180°-∠B=180°-135°=45°(两直线平行,同旁内角互补).
∵CF∥AB,DE∥AB,
∴CF∥DE(平行于同一条直线的两直线平行).
∴∠2=∠180°-∠D=180°-145°=35°(两直线平行,同旁内角互补). ∴∠BCD=∠1+∠2=45°+35°=80°. (2)∠B+∠C+∠D=360°.
理由:如答图5-3-2过点C作CF∥AB,得∠B+∠1=180°(两直线平行,同旁内角互补).
∵CF∥AB,DE∥AB,
∴CF∥DE(平行于同一条直线的两直线平行). ∴∠D+∠2=180°(两直线平行,同旁内角互补). ∴∠B+∠1+∠2+∠D=360°. 即∠B+∠BCD+∠D=360°.
点拨:辅助线CF是联系AB与DE的纽带. 11.(1)B (2)C