最新消息:学生作文网,您身边的作文指导专家!

小学奥数解题方法大全 小学奥数解题思路

小学作文 zuowen 2浏览

【 – 小学作文】

篇一:《小学奥数解题方法大全 3》

21、数字和与最大最小问题

【数字求和】

例1 100个连续自然数的和是8450,取其中第1个,第3个,第5个,,第99个(所有第奇数个),再把这50个数相加,和是______。 (上海市第五届小学数学竞赛试题)

讲析:第50、51两个数的平均数是8450÷ 100= 84. 5,所以,第50个数是84。则100个连续自然数是:

35,36,37,,133,134。

上面的一列数分别取第1、3、5、、99个数得: 35,37,39,131,133。

则这50个数的和是:

例2 把1至100的一百个自然数全部写出来,所用到的所有数码的和是_____。

(上海市第五届小学数学竞赛试题)

讲析;可把1至100这一百个自然数分组,得

(1、2、3、、9),(10、11、12、、19),(20、21、22、

29),,(90、91、92、99),(100)。

容易发现前面10组中,每组的个位数字之和为45。而第一组十位上是0,第二组十位上是1,第三组十位上是2,第十组十位上是9,所以全体十位上的数字和是(l+2+3++9)×10=450。故所有数码的和是45×10+450+l=901。

续若干个数字之和是1992,那么a=____。

(北京市第八届“迎春杯”小学数学竞赛试题)

又,1992÷27=73余21,而21=8+5+7+1,所以 a=6。

例4 有四个数,每次选取其中三个数,算出它们的平均数,再加上另外一个数,用这种方法计算了四次,分别得到四个数:86,92,100,106。那么,原来四个数的平均数是

(1993年全国小学数学奥林匹克决赛试题)

讲析:每次所选的三个数,计算其平均数,实际上就是计算这三个数中

原来四个数的平均数为(86+92+100+106)÷2=192。

【最大数与最小数】

例1 三个不同的最简真分数的分子都是质数,分母都是小于20的合数,要使这三个分数的和尽可能大,这三个分数是

(全国第四届《从小爱数学》邀请赛试题)。

讲析: 20以内的质数有: 2、 3、 5、 7、 11、 13、 17、 19

要使三个分数尽量大,必须使每个分子尽量大而分母尽量小。且三个真

例2 将1、2、3、4、5、6、7、8这八个数分成三组,分别计算各组数的和。已知这三个和互不相等,且最大的和是最小和的2倍。问:最小的和是多少? (全国第三届“华杯赛”决赛口试试题)

讲析;因为1+2+3++8=36,又知三组数的和各不相同,而且最大的

例3 把20以内的质数分别填入□中(每个质数只用一次):

使A是整数。A最大是多少?

(第五届《从小爱数学》邀请赛试题)

讲析:要使A最大,必须使分母尽量小,而分子尽量大。

分母分别取2、3、5时,A都不能为整数。当分母取7时,

例4 一组互不相同的自然数,其中最小的数是1,最大的数是25。除1之外、这组数中的任一个数或者等于这组数中某一个数的2倍,或者等于这组数中某两个数之和。问:这组数之和的最大值是多少?当这组数之和有最小值时,这组数都有哪些数?并说明和是最小值的理由。

(全国第四届“华杯赛”决赛第一试试题)

析:观察自然数1、2、3、4、5、、25这25个数,发现它们除1之外,每个数都能用其中某一个数的2倍,或者某两个数之和表示。因此,这组数之和的最大值是1+2+3++25=325。

下面考虑数组中各数之和的最小值。

1和25是必取的,25不能表示成一个数的2倍,而表示成两个数之和的形式,共有12种。我们取两个加数中含有尽可能大的公约数的一组数(20+5)或者(10+15)。当取1、5、20、25时,还需取2、3、10三个;当取1、10、15、25时,还需取2、3、5。经比较这两组数,可知当取1、2、3、4、5、10、15、25时,和最小是61。

22、数字串问题

【找规律填数】

例1 找规律填数

(杭州市上城区小学数学竞赛试题)

(1992年武汉市小学数学竞赛试题)

讲析:数列填数问题,关键是要找出规律;即找出数与数之间有什么联系。 第(1)小题各数的排列规律是:第1、3、5、(奇数)个数分别

别是4和2。

第(2)小题粗看起来,各数之间好像没有什么联系。于是,运用分数

得到了

例2 右表中每竖行的三个数都是按照一定的规律排列的。按照这个规律在空格中填上合适的数。

(1994年天津市小学数学竞赛试题)

讲析:根据题意,可找出每竖行的三个数之间的关系。不难发现每竖行中的第三个数,是由前两数相乘再加上1得来的。所以空格中应填33。

【数列的有关问题】

数是几分之几?

(第一届《从小爱数学》邀请赛试题)

讲析:经观察发现,分母是1、2、3、4、5的分数个数,分别是1、3、5、7、9。所以,分母分别为1、2、39的分数共

篇二:《小学奥数解题方法大全 4》

41、简单方程的解法

【一元一次方程解法】求方程的解(或根)的过程,叫做解方程。解一元一次方程的一般步骤(或解法)是:去分母,去括号,移项,合并同类项,两边同除以未知数x的系数。

解 去分母,两边同乘以6,得

3(x-9)-2(11-x)=12

去括号,得3x-27-22+2x=12

移项,得3x+2x=12+27+22

合并同类项,得5x=61

【分式方程解法】分母中含未知数的方程是“分式方程”。解分式方程的一般步骤(或方法)是:

(1)方程两边都乘以最简公分母,约去分母,化成整式方程;

(2)解这个整式方程;

(3)把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根,是原方程的增根,必须舍去。

解 方程两边都乘以x(x-2),约去分母,得

5(x-2)=7x

解这个整式方程,得x=-5,

检验:当x=-5时,{小学奥数解题方法大全}.

x(x-2)=(-5)(-5-2)=35≠0,

所以,-5是原方程的根。

解方程两边都乘以(x+2)(x-2),即都乘以(x2-4),约去分母,得

(x-2)2-16=(x+2)2

解这个整式方程,得x=-2。

检验:当x=-2时,(x+2)(x-2)=0,所以,-2是增根,原方程无解。{小学奥数解题方法大全}.

42、加法运算定律

【加法交换律】两个数相加,交换加数的位置,它们的和不变。这叫做“加法的交换定律”,简称“加法交换律”。

加法交换律用字母表达,可以是

a+b=b+a。

例如:864+1,236=1,236+864=2,100

【加法结合律】三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加,它们的和不变。这叫做“加法的结合定律”,简称“加法结合律”。 加法结合律用字母表达,可以是

(a+b)+c=a+(b+c)。

例如:(48928+2735)+7265

=48928+(2735+7265)

=48928+10000

= 58928

43、几何图形旋转

【长方形(或正方形)旋转】将一个长方形(或正方形)绕其一边旋转一周,得到的几何体是“圆柱”。

如图1.37,将矩形ABCD绕AB旋转一周,得圆柱AB。其中AB为圆柱的轴,也是圆柱的高。BC或AC是圆柱底面圆的半径,CD叫做圆柱的母线。

【直角三角形旋转】将一个直角三角形绕着它的一条直角边旋转一周,所形成的几何体是“圆锥”。

例如图1.38,将直角三角形ABC,绕直角边AC旋转一周,便形成了圆锥AC。其中AC是圆锥的轴,也是圆锥的高;CB是圆锥底面的半径;AB叫做圆锥的母线。

【直角梯形旋转】将一个直角梯形绕着它的直角腰旋转一周所形成的几何体,叫做“圆台”。

例如图1.39,将直角梯形ABCD绕着它的直角腰AB旋转一周。便形成了圆台AB。其中,AB是圆台的轴,也是圆台的高,上下底AD、BC,分别是圆台上、下底面圆的半径,斜腰DC,是圆台的母线。

【半圆旋转】将一个半圆绕着它的直径旋转一周所形成的几何体,叫做“球”。

例如图1.40,半圆绕着它的直径AB旋转一周,便形成了球O。原来的半圆圆心O是球心;原来半圆的半径和直径,分别叫做球的半径和直径;原来半圆的直径也是球的轴和直径。

篇三:《小学奥数解题方法大全 2》

11、有关数的法则或方法

【数的读写方法】(整数中多位数的读写方法,以及小数、分数、百分数的读、写方法,见小学数学课本,此处略。)

“成数”、“折数”即“十分数”,它们常用中国数字和文字“七成”、“二成五”、“八折”、“九五折”等表示,并根据其文字去读。它们也常用分母为十的分数,或者用百分数去表示,这时便可按分数、百分数的方法去读。 “千分数”是表示一个数是另一个数的千分之几的分数,它常用“千分号”–“”来写千分数,如某地人口出生率为千分之七,写作“7”,读作“千分之七”。

【科学记数法】用带一位整数的小数,去乘以10的整数次幂来表示一个数的方法,叫做“科学记数法”。

利用小数点移动的规律,很容易把一个数用“科学记数法”表达为“a×10n(1≤a≤10,n是整数)”的形式。例如:

25700,把小数点向左移动四位,得1<2.57<10,但2.57比25700小了10000倍,所以

25700=2.57×104。

0.00867,把小数点向右移动三位,得1<8.67<10,但8.67比0.00867大了1000倍,所以

【近似数截取方法】截取近似数的方法,一般有四舍五入法、去尾法和进一法三种。

四舍五入法──省略一个数的一部分尾数,取它的近似数的时候,如果要舍去的尾数的最高位上的数是4,或者是比4小的数,就把尾数舍去;如果要舍去的尾数的最高位上的数是5,或者是比5大的数,把尾数舍去以后,要向它的前一位进一。这种求近似数的方法叫做“四舍五入法”。

例如,把8,654,000四舍五入到万位,约等于865万;把7.6239四舍五入保留两位小数约等于7.62;把2,873,000,000四舍五入到亿位,约等于29亿;把32.99506四舍五入精确到百分位约等于33.00。

去尾法──要省略的尾数不论是多少,一律舍去不要,这种求近似数的方法叫做“去尾法”。

进一法──省略某一个数某一位后面的尾数时,不管这些尾数的大小,都向它的前一位进一。这种求近似数的方法,叫做“进一法”。

显然,用“进一法”和“五入”方法截取的近似值,叫做“过剩近似值”,而用“去尾法”和“四舍”方法截取的近似值,叫做“不足近似值”。

值得注意的是:在近似数的取舍结果中,小数点后最右一位上的零必须写上。例如,把1.5972四舍五入,保留两位小数得1.60,即1.5972≈1.60,最后的“0”不可去掉,否则,它只精确到十分位了。

【质数判定方法】判定一个较大的数是不是质数,一般有两种方法。

(1)查表法。用查质数表的方法,可以较快地判断一个数是否为质数:质数表上有的是质数,同一范围内的质数表上没有这个数,那它便是个合数。

(2)试除法。如果没有质数表,也来不及制作一个质数表,可以用试除来判断。

例如,要判定161和197是不是质数,可以把这两个数依次用2、3、5、7、11、13、17、19等质数去试除。这是因为一个合数总能表示成几个质因数的乘积,若161或197不能被这个合数的质因数整除,那么也一定不能被这个合数整除。所以,我们只要用质数去试除就可以了。

由161÷7=23,可知161的约数除了1和它本身外,至少还有7和23。所以,161是合数,而不是质数。

由197依次不能被2、3、5、7、11、13整除,而197÷17=1110,这时的除数17已大于不完全商11,于是可以肯定:197是质数,而不是合数。因为197除了它本身以外,不可能有比17大的约数。假定有,商也一定比11小。这就是说,197同时还要有比11小的约数。但经过试除,比11小的质数都不能整除197,这说明比11小的约数是不存在的,所以197是质数,不是合数。

【最大公约数求法】最大公约数的求法,一般可用下面四种方法。

(1)分解质因数法。先把各数分解质因数,再把各数公有的一切质因数连乘起来,就是所求的最大公约数。例如,求2940、756和168的最大公约数: ∵ 2940=22×3×5×72,

756=22×33×7,

168=23×3×7;

∴(2940,756,168)=22×3×7=84。

注:“(2940,756,168)=84”的意思,就是“2940、756和168的最大公约数是84”。

(2)检验公约数法。“检验公约数法”即“试除法”,也是小学数学课本介绍的那一种一般的求法,此处略。

(3)辗转相减法。较大的两个数求最大公约数,可以用“辗转相减法”:用大数减小数,如果减得的差与较小的数不相等,便再以大减小求差,直到出现两数相等为止。这时,相等的数就是这两个数的最大公约数。

例如,求792和594的最大公约数。

∵(792,594)=(792-594,594)

=(198,594)=(594-198,198)

=(198,396)=(198,396-198)

=(198,198)=198,

∴(792,594)=198。

用辗转相减法求两个数的最大公约数,可以推广到求n个数的最大公约数,具体做法是:可以不拘次序地挑选最方便的,从较大的数里减去较小的数。这样逐次做下去,直到所得的差全部相等为止。这个相等的差,就是这些数的最大公约数。

例如,求1260、1134、882和1008的最大公约数。

∵(1260,1134,882,1008)

=(1260-1134,882,1008-882,1134-882)

=(126,126,882,252)

=(126,126,882-126×6,252-126)

=(126,126,126,126)=126,

∴(1260,1134,882,1008)=126。

(4)辗转相除法(欧几里得算法)。

用辗转相除法求两个数的最大公约数,步骤如下:

光用较小数去除较大的数,得到第一个余数;

再用第一个余数去除较小的数,得到第二个余数;

又用第二个余数去除第一个余数,得到第三个余数;

这样逐次用后一个余数去除前一个余数,直到余数是0为止。这时,余数“0”前面的那个余数,便是这两个数的最大公约数。

求两个较大的数的最大公约数,用上面的第一、二种方法计算,是相当麻烦的,而采用“辗转相除法”去求,就简便、快速得多了。

例如,求437和551的最大公约数。具体做法是:先将437和551并排写好,再用三条竖线把它们分开。然后依下述步骤去做:

(1)用较小数去除较大数把商数“1”写在较大数的线外, 并求得余数为114。

(2)用余数114去除437,把商数“3”写在比114大的数(437)的线外,并求得余数为95。

(3)用余数95去除114,把商数“1”写在114右边的直线外,并求得余数为19。

(4)用余数19去除95,把商数“5”写在95左边的直线外面,并求得余数为0。

(5)当余数为0时,就可断定余数0前面的那一个余数19,就是437和551的最大公约数。

又如,求67和54的最大公约数,求法可以是

由余数可知,67和54的最大公约数是1。也就是说,67和54是互质数。 辗转相除法,虽又称作“欧几里得算法”,实际上它是我国最先创造出来的。早在我国古代的《九章算术》上,就有“以少减多,更相减损”的方法求最大公约数的记载。一般认为,“辗转相除法”即源于此。这比西方人欧几里得等人的发现要早600年以上。

辗转相除法是求两个数的最大公约数的方法。如果要求三个或三个以上数的最大公约数,可以用它先求出其中两个数的最大公约数,再求这个最大公约数与第三个数的最大公约数。这样依次下去,直到最后一个数为止。最后的一个最大公约数,就是这几个数所要求的最大公约数。

【分数最大公约数求法】自然数的最大公约数的定义,可以扩展到分数。一组分数的最大公约数一定是分数,而这组分数分别除以它们的最大公约数,应得整数。

求一组分数的最大公约数的方法是:

(1)先将各个分数中的带分数化成假分数;

(2)再求出各个分数分母的最小公倍数a;

篇四:《《小学奥数解题方法大全》》

第一讲 观察法

在解答数学题时,第一步是观察。观察是基础,是发现问题、解决问题的首要步骤。小学数学教材,特别重视培养观察力,把培养观察力作为开发与培养学生智力的第一步。

观察法,是通过观察题目中数字的变化规律及位置特点,条件与结论之间的关系,题目的结构特点及图形的特征,从而发现题目中的数量关系,把题目解答出来的一种解题方法。

观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。

*例1(适于一年级程度)此题是九年义务教育六年制小学教科书数学

第二册,第11页中的一道思考题。书中除图1-1的图形外没有文字说明。这道题旨在引导儿童观察、思考,初步培养他们的观察能力。这时儿童已经学过20以内的加减法,基于他们已有的知识,能够判断本题的意思是:在右边大正方形内的小方格中填入数字后,使大正方形中的每一横行,每一竖列,以及两条对角线上三个数字的和,都等于左边小正方形中的数字18。实质上,这是一种幻方,或者说是一种方阵。

解:现在通过观察、思考,看小方格中应填入什么数字。从横中行10+6+□=18会想到,18-10-6=2,在横中行右面的小方格中应填入2(图1-2)。

从竖右列7+2+□=18(图1-2)会想到,18-7-2=9,在竖右列下面的小方格中应填入9(图1-3)。

从正方形对角线上的9+6+□=18(图1-3)会想到,18-9-6=3,在大正方形左上角的小方格中应填入3(图1-4)。

从正方形对角线上的7+6+□=18(图1-3)会想到,18-7-6=5,在大正方形左下角的小方格中应填入5(图1-4)。

从横上行3+□+7=18(图1-4)会想到,18-3-7=8,在横上行中间的小方格中应填入8(图1-5)。

又从横下行5+□+9=18(图1-4)会想到,18-5-9=4,在横下行中间的小方格中应填入4(图1-5)。

图1-5是填完数字后的幻方。

例2 看每一行的前三个数,想一想接下去应该填什么数。(适于二年级程度)

6、16、26、____、____、____、____。

9、18、27、____、____、____、____。

80、73、66、____、____、____、____。

解:观察6、16、26这三个数可发现,6、16、26的排列规律是:16比6大10,26比16大10,即后面的每一个数都比它前面的那个数大10。

观察9、18、27这三个数可发现,9、18、27的排列规律是:18比9大9,27比18大9,即后面的每一个数都比它前面的那个数大9。

观察80、73、66这三个数可发现,80、73、66的排列规律是:73比80小7,66比73小7,即后面的每一个数都比它前面的那个数小7。

这样可得到本题的答案是:

6、16、26、36、46、56、66。

9、18、27、36、45、54、63。

80、73、66、59、52、45、38。

例3 将1~9这九个数字填入图1-6的方框中,使图中所有的不等号均成立。(适于三年级程度)

解:仔细观察图中不等号及方框的排列规律可发现:只有中心的那个方框中的数小于周围的四个数,看来在中心的方框中应填入最小的数1。再看它周围的方框和不等号,只有左下角的那个方框中的数大于相邻的两个方框中的数,其它方框中的数都是一个比一个大,而且方框中的数是按顺时针方向排列越来越小。

所以,在左下角的那个方框中应填9,在它右邻的方框中应填2,在2右面的方框中填3,在3上面的方框中填4,以后依次填5、6、7、8。

图1-7是填完数字的图形。

{小学奥数解题方法大全}.

例4 从一个长方形上剪去一个角后,它还剩下几个角?(适于三年级程度) 解:此题不少学生不加思考就回答:“一个长方形有四个角,剪去一个角剩下三个角。”

我们认真观察一下,从一个长方形的纸上剪去一个角,都怎么剪?都是什么情况?

(1)从一个角的顶点向对角的顶点剪去一个角,剩下三个角(图1-8)。

(2)从一个角的顶点向对边上任意一点剪去一个角,剩下四个角(图1-9)。

(3)从一个边上任意一点向邻边上任意一点剪去一个角,

剩下五个角(图1-10)。

例5 甲、乙两个人面对面地坐着,两个人中间放着一个三位数。这个三位数的每个数字都相同,并且两人中一个人看到的这个数比另一个人看到的这个数大一半,这个数是多少?(适于三年级程度)

解:首先要确定这个三位数一定是用阿拉伯数字表示的,不然就没法考虑了。 甲看到的数与乙看到的数不同,这就是说,这个三位数正看、倒看都表示数。在阿拉伯数字中,只有0、1、6、8、9这五个数字正看、倒看都表示数。

这个三位数在正看、倒看时,表示的数值不同,显然这个三位数不能是000,也不能是111和888,只可能是666或999。

如果这个数是666,当其中一个人看到的是666时,另一个人看到的一定是999,999-666=333,333正好是666的一半。所以这个数是666,也可以是999。

*例6 1966、1976、1986、1996、2006这五个数的总和是多少?(适于三年级程度)

解:这道题可以有多种解法,把五个数直接相加,虽然可以求出正确答案,但因数字大,计算起来容易出错。

如果仔细观察这五个数可发现,第一个数是1966,第二个数比它大10,第三个数比它大20,第四个数比它大30,第五个数比它大40。因此,这道题可以用下面的方法计算:

1966+1976+1986+1996+2006

=1966×5+10×(1+2+3+4)

=9830+100

=9930

这五个数还有另一个特点:中间的数是1986,第一个数1966比中间的数1986小20,最后一个数2006比中间的数1986大20,1966和2006这两个数的平均数是1986。1976和1996的平均数也是1986。这样,中间的数1986是这五个数的平均数。所以,这道题还可以用下面的方法计算:

1966+1976+1986+1996+2006

=1986×5

=9930

例7 你能从400÷25=(400×4)÷(25×4)=400×4÷100=16中得到启发,很快算出(1)600÷25(2)900÷25(3)1400÷25(4)1800÷25(5)7250÷25的得数吗?(适于四年级程度)

解:我们仔细观察一下算式:

400÷25=(400×4)÷(25×4)=400×4÷100=16

不难看出,原来的被除数和除数都乘以4,目的是将除数变成1后面带有0的整百数。这样做的根据是“被除数和除数都乘以一个相同的数(零除外),商不变”。

进行这种变化的好处就是当除数变成了1后面带有0的整百数以后,就可以很快求出商。按照这个规律,可迅速算出下列除法的商。

(1)600÷25 (2)900÷25 =(600×4)÷(25×4) =(900×4)÷(25×4) =600×4÷100 =900×4÷100 =24 =36

(3)1400÷25 (4)1800÷25 =(1400×4)÷(25×4) =(1800×4)÷(25×4) =1400×4÷100 =1800×4÷100 =56 =72

(5)7250÷25

=(7250×4)÷(25×4)

=29000÷100

=290

*例8 把1~1000的数字如图1-11那样排列,再如图中那样用一个长方形框框出六个数,这六个数的和是87。如果用同样的方法(横着三个数,竖着两个数)框出的六个数的和是837,这六个数都是多少?(适于五年级程度)

解:(1)观察框内的六个数可知:第二个数比第一个数大1,第三个数比第一个数大2,第四个数比第一个数大7,第五个数比第一个数大8,第六个数比第一个数大9。

篇五:《小学奥数解题技巧大全100讲》

第一讲 观察法

观察法,是通过观察题目中数字的变化规律及位置特点,条件与结论之间的关系,题目的

结构特点及图形的特征,从而发现题目中的数量关系,把题目解答出来的一种解题方法。

观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。

*例1(在右边大正方形内的小方格中填入数字后,使大正方形中的每一横行,每一竖列,

以及两条对角线上三个数字的和,都等于左边小正方形中的数字18。

实质上,这是一种幻方,或者说是一种方阵。

解:现在通过观察、思考,看小方格中应填入什么数字。从横中行10+6+□=18会想到,

18-10-6=2,在横中行右面的小方格中应填入2(图1-2)。

从竖右列7+2+□=18(图1-2)会想到,18-7-2=9,在竖右列下面的小方格中应填入9(图

1-3)。

从正方形对角线上的9+6+□=18(图1-3)会想到,18-9-6=3,在大正方形左上角的小方格

中应填入3(图1-4)。

从正方形对角线上的7+6+□=18(图1-3)会想到,18-7-6=5,在大正方形左下角的小方格

中应填入5(图1-4)

从横上行3+□+7=18(图1-4)会想到,18-3-7=8,在横上行中间的小方格中应填入8(图

1-5)。

又从横下行5+□+9=18(图1-4)会想到,18-5-9=4,在横下行中间的小方格中应填入4(图

1-5)。

图1-5是填完数字后的幻方。

例2 看每一行的前三个数,想一想接下去应该填什么数。(适于二年级程度)

6、16、26、____、____、____、____。

9、18、27、____、____、____、____。

80、73、66、____、____、____、____。

解:观察6、16、26这三个数可发现,6、16、26的排列规律是:16比6大10,26比16

大10,即后面的每一个数都比它前面的那个数大10。

观察9、18、27这三个数可发现,9、18、27的排列规律是:18比9大9,27比18大9,

即后面的每一个数都比它前面的那个数大9。

观察80、73、66这三个数可发现,80、73、66的排列规律是:73比80小7,66比73小7,

即后面的每一个数都比它前面的那个数小7。

这样可得到本题的答案是:

6、16、26、36、46、56、66。

9、18、27、36、45、54、63。

80、73、66、59、52、45、38。

例3 将1~9这九个数字填入图1-6的方框中,使图中所有的不等号均成立。

解:仔细观察图中不等号及方框的排列规律可发现:只有中心的那个方框中的数小于周围

的四个数,看来在中心的方框中应填入最小的数1。

再看它周围的方框和不等号,只有左下角的那个方框中的数大于相邻的两个方框中的数,

其它方框中的数都是一个比一个大,而且方框中的数是按顺时针方向排列越来越小。

所以,在左下角的那个方框中应填9,在它右邻的方框中应填2,在2右面的方框中填3,

在3上面的方框中填4,以后依次填5、6、7、8。

图1-7是填完数字的图形。

例4 从一个长方形上剪去一个角后,它还剩下几个角?(适于三年级程度)

解:此题不少学生不加思考就回答:“一个长方形有四个角,剪去一个角剩下三个角。”

我们认真观察一下,从一个长方形的纸上剪去一个角,都怎么剪?都是什么情况?

(1)从一个角的顶点向对角的顶点剪去一个角,剩下三个角(图1-8)。

(2)从一个角的顶点向对边上任意一点剪去一个角,剩下四个角(图1-9)。

(3)从一个边上任意一点向邻边上任意一点剪去一个角,

剩下五个角(图1-10)。

例5 甲、乙两个人面对面地坐着,两个人中间放着一个三位数。这个三位数的每个数字都

相同,并且两人中一个人看到的这个数比另一个人看到的这个数大一半,这个数是多少?

(适于三年级程度)

解:首先要确定这个三位数一定是用阿拉伯数字表示的,不然就没法考虑了。

甲看到的数与乙看到的数不同,这就是说,这个三位数正看、倒看都表示数。在阿拉伯数{小学奥数解题方法大全}.

字中,只有0、1、6、8、9这五个数字正看、倒看都表示数。

{小学奥数解题方法大全}.

这个三位数在正看、倒看时,表示的数值不同,显然这个三位数不能是000,也不能是111

和888,只可能是666或999。

如果这个数是666,当其中一个人看到的是666时,另一个人看到的一定是999,999-666=333,

333正好是666的一半。所以这个数是666,也可以是999。

*例6 1966、1976、1986、1996、2006这五个数的总和是多少?(适于三年级程度){小学奥数解题方法大全}.

解:这道题可以有多种解法,把五个数直接相加,虽然可以求出正确答案,但因数字大,

计算起来容易出错。

如果仔细观察这五个数可发现,第一个数是1966,第二个数比它大10,第三个数比它大20,

第四个数比它大30,第五个数比它大40。因此,这道题可以用下面的方法计算:

1966+1976+1986+1996+2006

=1966×5+10×(1+2+3+4)

=9830+100

=9930

这五个数还有另一个特点:中间的数是1986,第一个数1966比中间的数1986小20,最后

一个数2006比中间的数1986大20,1966和2006这两个数的平均数是1986。1

976和1996的平均数也是1986。这样,中间的数1986是这五个数的平均数。所以,这道

题还可以用下面的方法计算:

1966+1976+1986+1996+2006

=1986×5

=9930

例7 你能从400÷25=(400×4)÷(25×4)=400×4÷100=16中得到启发,很快算出(1)

600÷25(2)900÷25(3)1400÷25(4)1800÷25(5)7250÷25的得数吗?(适于四年

级程度)

解:我们仔细观察一下算式:

400÷25=(400×4)÷(25×4)=400×4÷100=16

不难看出,原来的被除数和除数都乘以4,目的是将除数变成1后面带有0的整百数。这样

做的根据是“被除数和除数都乘以一个相同的数(零除外),商不变”。

进行这种变化的好处就是当除数变成了1后面带有0的整百数以后,就可以很快求出商。

按照这个规律,可迅速算出下列除法的商。

(1)600÷25 (2)900÷25

=(600×4)÷(25×4) =(900×4)÷(25×4)

=600×4÷100 =900×4÷100

=24 =36

(3)1400÷25 (4)1800÷25

=(1400×4)÷(25×4) =(1800×4)÷(25×4)

=1400×4÷100 =1800×4÷100

=56 =72

(5)7250÷25

=(7250×4)÷(25×4)

=29000÷100

=290

*例8 把1~1000的数字如图1-11那样排列,再如图中那样用一个长方形框框出六个数,

这六个数的和是87。如果用同样的方法(横着三个数,竖着两个数)框出的六个数的和是

837,

这六个数都是多少?(适于五年级程度)

解:(1)观察框内的六个数可知:第二个数比第一个数大1,第三个数比第一个数大2,第

四个数比第一个数大7,第五个数比第一个数大8,第六个数比第一个数大9。

假定不知道这几个数,而知道上面观察的结果,以及框内六个数的和是87,要求出这几个

数,就要先求出六个数中的第一个数:

(87-1-2-7-8-9)÷6

=60÷6

=10

求出第一个数是10,往下的各数也就不难求了。

因为用同样的方法框出的六个数之和是837,这六个数之中后面的五个数也一定分别比第一

个数大1、2、7、8、9,所以,这六个数中的第一个数是:

(837-1-2-7-8-9)÷6

=810÷6

=135

第二个数是:135+1=136

第三个数是:135+2=137

第四个数是:135+7=142

第五个数是:135+8=143

第六个数是:135+9=144

(2)观察框内的六个数可知:①上、下两数之差都是7;②方框中间坚行的11和18,分

别是上横行与下横行三个数的中间数。

11=(10+11+12)÷3

18=(17+18+19)÷3

所以上横行与下横行两个中间数的和是:

87÷3=29

由此可得,和是837的六个数中,横向排列的上、下两行两个中间数的和是:

837÷3=279

因为上、下两个数之差是7,所以假定上面的数是x,则下面的数是x+7。

x+(x+7)=279

2x+7=279

2x=279-7

=272

x=272÷2

=136

x+7=136+7

=143

因为上一横行中间的数是136,所以,第一个数是:136-1=135

第三个数是:135+2=137

因为下一横行中间的数是143,所以,

第四个数是:143-1=142

第六个数是:142+2=144

*例9 有一个长方体木块,锯去一个顶点后还有几个顶点?(适于五年级程度)

解:(1)锯去一个顶点(图1-12),因为正方体原来有8个顶点,锯去一个顶点后,增加了

三个顶点,所以,

转载请注明:中小学优秀作文大全_作文模板_写作指导_范文大全 » 小学奥数解题方法大全 小学奥数解题思路