最新消息:学生作文网,您身边的作文指导专家!

24世纪关于宇宙的想象作文 想象作文未来的宇宙

小学作文 zuowen 4浏览

【 – 小学作文】

第一篇:《六年级下册 想象作文:宇宙大战》

六年级下册 想象作文:宇宙大战

2012-4-10 廖文辉

在22世纪,爆发了一场宇宙大战。这是由外星人挑起的战争。 听到这个消息后,我方立马准备好战斗的武器。虽然我们的武器已是最有杀伤力的,可是外星人竟研制出一种“反射盾”。不过我们并没有因此沮丧,而是更加团结一致,抵抗外敌。

宇宙大战在凌晨一点开始了。许多外星的激光飞船已经迫不及待地来攻击我方,发射了非常厉害的激光子弹。当然,我们也不是好欺负的。我立马指挥我方的火炮攻击飞船来发射火炮。我轻轻按下我研究室里的一个神秘的按钮。突然,“嗖”一声,一艘巨大的飞船起飞,这艘飞船可不是普通的飞船,它拥有许多意想不到的超能力。我坐上飞船,飞船就不到一秒钟不到飞到了目的地。我见外星人来势汹汹,不敢轻举妄动。外星人对我们说一大堆“天文”,还有对我们表现出不屑的眼神。在我的大脑立马飞速转动,在想着怎样对付外星人时,突然,一声巨响,只见外星人正用着“反射盾”来反攻我们,地球一片狼籍。

于是,我想到了一个办法:将错就错,在外星人嚣张的时候,趁机动用全球的能力来攻打外星人。这个方法得到了各国的赞同。得到同意后,我立马通知各个飞船。然后,外星人果然因此嚣张了起来,又开始“叽里呱啦”地在嘲笑我们。我们趁外星人在忘情地诉说时,3秒后启动全体飞船来攻击外星人。果然,外星人此时最不堪一击。所有的外星人都被我们打败了,逃回了外星。

我在无意间捡到一张纸条,上面有着外星人用中文写的歪歪扭扭的字:“亲爱的地球人,经过这次宇宙大战后,我们明白了骄傲使人落后,谢谢你们让我们明白这个道理,有空来这做客。”

以后,我们化敌为友,世界和平。

第二篇:《《遨游太空》想象作文》

遨游太空

早上起来,不小心跌进了多啦A梦的穿梭门"" 进了时光隧道,不知道走了多长时间,到了一个星球上。原来这个星球叫水星:水星 (Mercury ),水星的英文名来自古罗马神墨丘利(赫尔墨斯)。中国古代称为辰星,是太阳系中的类地行星,也是岩态行星,其主要由石质和铁质构成,密度较高。自转周期很长为58.65天,自转方向和公转方向相同,水星在88个地球日里就能绕太阳一周,平均速度47.89km/s,是太阳系中运动最快的行星。水星无卫星环绕,它是八大行星中最小的行星,也是离太阳最近的行星。

一会又到了金星:金星(Venus)是太阳系中八大行星之一,按离太阳由近及远的次序是第二颗。它是离地球最近的行星(水星有时候会更近)。中国古代称之为长庚、启明、太白或太白金星。公转周期是224.71地球日。夜空中亮度仅次于月球,排第二,金星要在日出稍前或者日落稍后才能达到亮度最大。它有时清晨出现在东方天空,被称为“启明”;傍晚处于天空的西侧。

又到了地球:地球是太阳系从内到外的第三颗行星,也是太阳系中直径、质量和密度最大的类地行星。赤道半径为6378.2公里,其大小在太阳系的行星中排列第五位。地球有大气层和磁场,表面的71%被水覆盖,其余部分是陆地,是一个蓝色星球。地球是包括人类在内上百万种生物的家园,也是目前人类所知宇宙中唯一存在生命的天体。地球已有45亿岁,有一颗天然卫星月球围绕着地球以27.32天的周期旋转,而地球自西向东旋转,以近24小时的周期自转并且以一年的周期绕太阳公转。

不知不觉间到了火星;火星(Mars)是太阳系八大行星之一,是太阳系由内往外数的第四颗行星,属于类地行星直径约为地球的一半,自转轴倾角、自转周期均与地球相近,公转一周约为地球公转时间的两倍。在西方称为“战神玛尔斯”,中国则称为“荧惑”。橘红色外表是因为地表的赤铁矿(氧化铁)。火星基本上是沙漠行星,地表沙丘、砾石遍布,没有稳定的液态水体。二氧化碳为主的大气既稀薄又寒冷,沙尘悬浮其中,每年常有尘暴发生。火星两极皆有水冰与干冰组成的极冠,会随着季节消长。

木星:木星,为太阳系八大行星之一,距太阳(由近及远)顺序为第五,亦为太阳系体积最大、自转最快的行星。2012年02月23日,科学家称发现木星2颗新卫星 累计卫星达66颗,木星主要由氢和氦组成,中心温度估计高达30,500℃。木星在太阳系的八大行星中体积和质量最大,它有着极其巨大的质量,是其它七大行星总和的2.5倍还多,是地球的317.89倍,而体积则是地球的1,316倍。西方人古代一般称之朱比特,古代中国称之岁星。

土星:土星,西方人古代称为Saturnus(拉丁文)。为太阳系八大行星之一,至太阳距离(由近到远)位于第六、体积则仅次于木星。并与木星、天王星及海王星同属气体(类木)巨星。土星有土星环,截止2012年已发现62颗卫星。古代中国亦称之镇星或填星。

天王星:天王星是太阳系八大行星中的第七颗(由近到远),在太阳系的体积是第三大(比海王星大),质量排名第四(比海王星轻)。他的名称来自古希腊神话中的天空之神乌拉诺斯(Οραν),是克洛诺斯(农神)的父亲,

宙斯(朱比特)的祖父。天王星是第一颗在现代发现的行星,虽然它的光度与五颗传统行星一样,亮度是肉眼可见的,但由于较为黯淡而未被古代的观测者发现。威廉·赫歇尔爵士在1781年3月13日宣布他的发现,在太阳系的现代史上首度扩展了已知的界限。这也是第一颗使用望远镜发现的行星。

海王星:海王星(Neptune)是环绕太阳运行的第八颗行星,是围绕太阳公转的第四大天体(直径上)。海王星在直径上小于天王星,但质量比它大。海王星的质量大约是地球的17倍,而类似双胞胎的天王星因密度较低,质量大约是地球的14倍。

海王星的大气层以氢和氦为主,还有微量的甲烷。在大气层中的甲烷,只是使行星呈现蓝色的一部分原因。海王星有太阳系最强烈的风,测量到的风速高达每小时2,100公里。海王星云顶的温度是-218 °C(55k),因为距离太阳最远,是太阳系最冷的地区之一。海王星核心的温度约为7,000 °C,可以和太阳的表面比较,也和大多数已知的行星相似。

海王星在1846年9月23日被发现,是唯一利用数学预测而非有计划的观测发现的行星。天文学家利用天王星轨道的摄动推测出海王星的存在与可能的位置。迄今只有航海家2号曾经在1989年8月25日拜访过海王星。

宇宙中不只有八大行星,还有许多的小天体、小彗星、小恒星等。宇宙还有许多未解之谜。

醒来原来只是一场梦""

六年级一班 王雪婷

第三篇:《关于宇宙的知识》

宇宙是什么样的?宇宙从哪里来?这自有人类以来的永恒疑问。从西方的海龟驮大陆,到中国的天方地圆,诞生了远古的神话和宗教。托勒密的天球模型认为地球是宇宙的中心,天上的太阳和其他行星绕着地球在不同层次的同心球面上运行,最高层的星星们则保持不动。这是个粗糙但有效的宇宙模型,更关键的是,符合基督教关于人间和天堂的描述。现代天文学的开创要从哥白尼等算起,借助更先进的光学望远镜,伽利略终于发现地球并非宇宙中心,地球和其他行星是围绕着太阳运转的。再到十七世纪,开普勒、胡克等人继续为太阳系勾勒大概的轮廓。最终伟大的牛顿建立了完美的经典力学大厦,其在天文学中的威望在发现冥王星后达到顶峰。那时人们确信宇宙间所有的规律都已发现殆尽,所有星系的运动都可纳入牛顿力学的体系中。这一时期人们相信宇宙是无限广大和永恒的存在,也许这使人有某种安全感。但是用牛顿力学解释宇宙有个致命的疑问,如果万有引力是正确的,为什么星系不会因为万有引力聚拢到一起?无论宇宙有没有一个中心,只要时间足够长,星系总会慢慢靠拢,最后碰撞、毁灭。这给现代天文学提出了挑战,但是即使是当时最具有革命精神的人,也无法想象今后的颠覆性的发现。

我们如何能得知太阳和遥远星星的信息?量子力学揭示了原子的内部结构,电子在固定的能级间跳跃,发出特定频率的光,进而可以预知各种元素的光谱。太阳也发光,将太阳光谱与地球上已知的元素光谱对照,我们可以知道太阳主要是氢、氦等气体组成,太阳就是一个大气球。用同样的方法观察遥远的星光,天文学家发现,其光谱和太阳几乎完全一样,这说明天上那些黯淡的星星,每一颗都是和我们太阳一样的恒星。行星的发现更困难一些,太阳系中的其他行星会被太阳照亮,但是遥远的星系中连恒星的光芒都那么黯淡,行星根本看不见。那怎么办呢?我们知道天体之间有万有引力,尽管行星质量相对恒星要小,但其引力仍会使恒星轨道产生微小扰动,通过精确观测恒星的位置,可以计算出是否有行星绕恒星公转,具体有几颗行星。由于要专门锁定恒星观测,目前发现的太阳系外的行星数量很稀少。科学家也希望发现环境与地球差不多的行星,也许其上能进化出类似地球的生命。

知道漫天都是恒星,但它们距离我们有多远呢?较近的天体可以用三角测距法测量,以地球围绕太阳公转的轨道直径上两点为三角形两顶点,测量天体的视角差来计算天体的距离。这一方法用来测量太阳系内各行星与太阳的距离很方便,也可测量临近我们的其他恒星。结果发现,距离我们最近的半人马座的某颗恒星,也有数光年之远。一光年是30万公里/秒*3600秒*24小时*365天=94608亿公里,而太阳到地球的距离才8光分。甚至大多数恒星用三角方法根本测不出来,说明其距离真是相当的远。那更远的恒星距离怎么测呢?科学家发现一种特殊的星体叫“造父变星”,其发光强弱周期性变化,且周期与其绝对亮度有比例关系。在地球上测定其亮度变化周期,可以得到其绝对发光强度作为“标准烛光”,再与地球上观察到的视觉亮度比较,由近亮远暗的原理,可以推算它的距离。寻找遥远星系中的造父变星,就可以知道星系的距离,由于造父变星的功劳,它又被称为“量天尺”。用这种方法测知,银河系的直径约10万光年,银河系有约2000亿颗恒星!恒星如此遥远意味着我们每晚看到的银河星光都是恒星数万年前发出的光线,我们是真正生活在“历史的天空下”。也是通过造父变星,20世纪20年代哈勃发现了仙女座河外星系。然而天上还有很多星团,极其黯淡,根本无法发现其中的造父变星。怎么办?可以用哈勃定律,红移量和距离成正比来计算距离,这将在下面介绍。由此发现除银河系外,还有数不清的河外星系,目前发现了的约有10亿个河外星系!另外超新星也可以用于测距,也一并在下面介绍。总之通过现代科技,我们认识到宇宙的广大,也更激起了探寻未知宇宙奥秘的热情。

哈勃的发现揭开了大爆炸宇宙理论的巨大帷幕。前面说到观察星光可以知道星星的成分和距离,但是它们怎样运动呢?其侧向运动可以直接观察,但径向运动由于离我们太遥远,几乎没有可观测的亮度变化。多普勒效应可以帮助我们。当我们站在马路或铁路边,汽车或火车鸣笛经过,我们会先听到尖锐的声音,车离我们远去时又听到低沉的声音。这是声波的波长在传播中由于声源相对我们的运动而被压缩或拉伸的结果,叫多普勒效应,我们用它来做汽车测速仪。同样,光是一种电磁波,当恒星相对地球上的观察者运动时,光的频率也会改变。恒星如果向地球而来,则光频上升,光波长向短波移动,称为蓝移。若恒星远离地球而去,则光频下降,光波长向长波移动,称为红移。测量恒星光谱的蓝移或红移量,可以知道恒星{24世纪关于宇宙的想象作文}.

的运动方向和速度。如果宇宙是稳定的,按照猜想,恒星的运动应该是随机的,远离我们的恒星数目和向我们而来的恒星数目应该差不多,也就是说,观测到的发生红移和蓝移的恒星数量应该差不多。结果哈勃的观测表明,绝大多数恒星都发生红移,而且距离越远的恒星远离的速度越快。这个发现非同小可,普遍的红移表明周围的星星都在离我们远去,这似乎暗示地球又成了宇宙的中心了,其实不然。打个比方,就像气球上任意两个点,吹气球时,随着气球的膨胀,气球上任意两个点间的距离会迅速拉大,但气球上任意一点都不是中心。所以哈勃的发现告诉我们的是,所有星系都在远离的事实表明,我们的宇宙正在膨胀,而非原先以为是稳恒的。如果宇宙现在正在膨胀,那么沿时间回溯,以前宇宙肯定比现在小,则肯定有那么一个时刻,宇宙中所有东西都聚集在一起,宇宙必然有个起点!

大爆炸的猜想正式登台。这个起点,人们猜想宇宙起始于一个非常小的点(奇点),并在一次惊天动地的大爆炸中诞生,之后一直膨胀至今。有人肯定要问,那宇宙诞生之前有什么?宇宙之外有什么呢?大爆炸理论认为,这种问法是错误的。按照爱因斯坦的相对论,时间和空间是合为一体的四维时空,则大爆炸的奇异点既是空间的起始点,又是时间的起始点。宇宙包含一切,没有宇宙之前,也没有宇宙之外。从星系退行的速度和星系间的距离可以反推宇宙的年龄,现在的看法,宇宙年龄大概为140亿年左右。

任何新理论的出现都要遭到保守者的反对,也只有经受这些考验,一个科学理论才能走向成熟。大爆炸理论也不例外,它提出之初,就不断遭到多数物理学家的反对,认为太违背永恒宇宙的信仰。相反大爆炸理论受到罗马教廷的欢迎,认为是上帝创造世界的间接证明。爱因斯坦也是稳恒宇宙的支持者,他为了得出了一个符合广义相对论的稳恒态宇宙模型,不惜假设了一个宇宙常数产生斥力以抵消引力的影响。这个凭空假设的宇宙常数使整个理论显得可疑。很多年后,当大爆炸理论最终被大家接受时,爱因斯坦称这个假设是他一生中犯的最大错误。

稳恒态宇宙理论另一个无法解释的问题是,夜空为什么这么黑?什么意思呢,如果宇宙永恒存在,按照目前观察到的恒星分布的密度,夜晚的星光应该很亮很密集,夜空将亮如白昼,而实际上我们只看到稀疏的星光。有人反驳说远处星星的光在传播途中被星际尘埃吸收了,但如果宇宙永恒存在,经过足够长的时间,尘埃总会被加热到足够热,也会发光,天空应该还是很亮。大爆炸理论解释说,由于宇宙膨胀得很快,恒星年龄也有限,目前远处恒星的光线还没来得及传到地球上,所以我们看不到太多的星星。

另一位稳恒宇宙的支持者质霍伊尔质疑大爆炸理论无法解释构成我们宇宙的各种元素是如何形成的,他提出了一个恒星炉模型。在这个模型中恒星是个大氢气球,在万有引力作用下,氢气聚集成恒星,恒星中心高温高压,氢原子在这里发生核聚变反应生成氦,反应产生的压力正好抵抗外有引力,产生的热使恒星发光。在恒星老年,氦元素继续聚变成氮、氧、硫,最终合成铁。当核聚变燃料烧完时,质量较小的恒星会先膨胀成一颗红巨星,再变成一颗黯淡的白矮星,主要由碳和氧构成,依靠电子简并压来抵抗万有引力。而超过钱德拉塞卡极限(约1.38倍太阳质量)的恒星会死于一场剧烈爆炸,亮度急剧上升(太阳亮度的50亿倍),此时的恒星称为“超新星”,名字叫新星,其实是垂死的挣扎。根据史书记载,公元185年,中国人观察到半人马座超新星爆发,亮度超过金星(《后汉书》:“客星出南门中,大如半筵,五色喜怒,稍小,至后年六月消”),369年又发现仙后座超新星爆发,亮度超过木星,其后又分别在1006(《宋史》:“景德三年四月戊寅,周伯星见,出氐南,骑官西一度,状如半月,有芒角,煌煌然可以鉴物,历库楼东”)、1054(《宋会要》:“至和元年五月己酉,出天关东南可数寸,岁余稍没。”)和1604年观察到豺狼座、金牛座和蛇夫座超新星爆发。

恒星死亡时,将这些核聚变合成元素喷发出来,再经过凝结形成新的恒星或行星。地球也是在恒星炉中锻造出来的,我们身上每个原子,都曾经是某颗恒星的一部分。行星被别的恒星俘获,构成了包括我们太阳系在内的星系。超新星的结局为中子星或黑洞。由于万有引力的压力太大,超新星在短暂的爆发后朝

中心“坍塌”,连电子都被挤压到原子核中,电子与质子中和变成中子,整个星体变成一个挨一个的中子形成的中子星,其密度如此大,一调羹这种物质就比地球总质量大好多倍。某些中子星由于自传和复杂的磁场作用,会周期性辐射高能射线脉冲,又称为脉冲星。

恒星炉模型非常好的解释了构成行星的各种元素的由来,但没法解释形成恒星的氢是如何来的,而且按照这个理论的计算,宇宙中恒星炉产生的元素氦的丰度(就是所占总物质的比例)没有实际上观察到的那么大。霍伊尔又假设氢是持续不断的从宇宙中创造出来的,这个凭空的假设和爱因斯坦的宇宙常数一样缺乏依据。而大爆炸理论认为,氢和氦都是在宇宙诞生后极短时间内被制造出来的。《圣经——创世纪》中说“上帝说要有光,于是便有了光”。按照大爆炸理论,宇宙诞生之初,没有物质,只有以辐射形式存在的能量。在宇宙早期极高的能量密度下,爱因斯坦著名的质能方程(E=mc2,原子弹和氢弹就是一丁点物质转化成能量的结果)使得能量与物质间维持持续不断的相互转化,达到一种热平衡,光子与核子间的比例约为10亿比1。而且高温下物质也表现得极像辐射,可以认为宇宙此时是一锅炙热的宇宙汤。具体来说,宇宙诞生1微秒后,随宇宙膨胀,温度下降到1万亿度,光开始转化成最基本的物质,如电子正电子中子质子中微子等。3分钟后,温度下降到1千万度左右,这时基本粒子开始结合形成最基本的原子核氢、氦以及少量的锂,宇宙的基本成分从此固定了。但直到约38万年之后,宇宙温度变成1万度时,原子核才能和电子结合形成原子。再往后,它们随宇宙膨胀而分散,但相邻的星云又在引力作用下聚集、凝结成恒星,大约在宇宙诞生后10亿年,宇宙中第一个星系形成,此时温度已经下降到零下200度。150亿年后的今天,温度约零下270度,我们的太阳是第二或第三代恒星了。在这一模型下计算得到元素氦的丰度正和我们今天的观测相符,从而霍伊尔的恒星炉理论反过来进一步支持了大爆炸理论。

恒星炉模型还有更深刻的意义,在研究恒星演化过程中,彭罗斯发现约数倍于太阳质量的大质量恒星不可避免的要崩塌到一个奇点上去形成所谓的黑洞,将此过程的发生顺序反过来就是一种爆炸。霍金将彭罗斯的结果应用在宇宙上,发现在广义相对论下,宇宙必然诞生于一次唯一的奇点大爆炸。这样宇宙大爆炸理论终于接近完善了。单单黑洞这个话题就值得开个专题来讲。黑洞,顾名思义,就是某种不可见的空洞,最主要的性质是其引力如此之大,以至于光线都无法从中逃脱,空间弯曲为一个闭合曲面。在黑洞中一切已知的物理定律都失效,我们所能观察到的实际上是不可观察的事件的集合的边界,即黑洞的视界。“黑洞无毛”,一切物质落入黑洞之后就丧失原有的信息,黑洞仅携带面积、质量、温度、自转等少数几个可观测量,这似乎违反热力学第二定律——孤立系统熵增原理。然而黑洞有温度和熵,即也有辐射,以一种奇怪的方式遵从热力学第二定律,黑洞并非那么黑的。物质被吸入黑洞过程中被加速及加热,产生强烈辐射,以高能辐射喷流形式从黑洞转轴方向喷射出来,据信可产生可观测的伽玛射线。即使黑洞附近空无一物,黑洞视界附近也会偶然产生虚实粒子对,具有负能量的粒子被黑洞吸收,正能量粒子逃离,从而使黑洞来起来有辐射,并损失能量。黑洞蒸发速度或辐射功率随质量的增大而减小。大型黑洞质量可有太阳的一亿倍,温度甚至比宇宙微波背景辐射还低,故其蒸发小于吸收。银河系中心被怀疑存在这样的巨型黑洞,否则无法解释银河系本身自转的速度为什么这么大。事实上,科学家甚至估计宇宙中黑洞的数量比恒星还多。某些微型黑洞可能产生于宇宙大爆炸初期偶然的高温高压环境下,称为“太初黑洞”,它有很强的辐射,实际上是白热的。最小的微型黑洞可能比原子还小。而一些中等大小的太初黑洞可能残存到现在,并有可能通过伽玛射线辐射观察到。

经过多个回合的较量,大爆炸理论逐渐占了上风,然而还缺乏更直接的证据,物理不是宗教,需要切实的证明。前苏联物理学家伽莫夫(曾写过广受欢迎的相对论及量子论科普读物《物理世界奇遇记》)相信,宇宙创生之初产生大量辐射,很多辐射转化成了物质,但应该还有些辐射残存下来,而且应该充斥整个宇宙空间,像是宇宙的背景一样。如果能观察到这种辐射,就可有力的证明大爆炸理论的正确性。由于宇宙的膨胀,这些大爆炸产生的背景辐射要在今天观察到,其波长应强烈的红移到微波波段,温度冷却到约3K。美国两位科学家彭齐亚斯和威尔逊在调试贝尔实验室的微波卫星通讯装置时无意中发现了这个辐射,大爆炸理论由此得到多数宇宙学家的认同。

好,如果宇宙是在某次大爆炸中形成的,那最初所有物质应该在空间中均匀分布着。那么随着宇宙膨胀,宇宙中物质的分布应该也是很均匀才对,但为什么我们看到的宇宙这么不均匀呢?有的地方星系密集,有的地方空空如也。哈勃太空望远镜绘制出的宇宙图像进一步表明,宇宙存在着许多大尺度结构。星系的分布并非均匀,有长河和巨洞。有些地方,上百万个星系聚集到一起形成巨大的星系团。这种大尺度的不均匀性是哪里来的?大爆炸理论引入量子机制解释这一问题。量子力学中一个基本规律是不确定性原理,物质的位置和速度不能同时精确测定,具有一定的随机涨落。由于宇宙诞生自一个比原子还小的奇点,空间的局域导致量子涨落效应特别明显,所以容易由随机涨落形成一点点不均匀,进而在宇宙迅速膨胀过程中,这种不均匀保留下来,形成我们看到的大尺度不均匀结构。那么又要问,证据在哪里?1989年美国航空航天局(NASA)专门为此发射“科比”(COBE)卫星,全面探测了微波背景辐射在各个方向上的分布,绘制了宇宙早期的辐射图像(宇宙蛋),真的发现了微小的辐射强度起伏分布,证明宇宙早期的确存在不均匀性,可形容为“宇宙的褶皱”。

似乎理论已经相当完善,人们试着来回答几个基本问题。首先,宇宙的形状是什么样的?什么叫宇宙的形状?打个比方,一只蚂蚁在地球仪上爬,在它看来,地面是平的,但是我们站在三维空间里知道,地球仪表面是弯曲的。如果蚂蚁想要知道它所处的面是不是弯曲,可以在地球仪表面画个三角形,测量三角形内角和,如果恰好等于180度,则称符合欧几里德几何,表面就是平的,如果不等于180度,则符合非欧几何,表面是弯曲的。;物质告诉空间如何弯曲,空间告诉物质如何运动”。根据爱因斯坦的广义相对论,引力可以使空间弯曲,就像人走在一个软垫子上,人所处的位置总塌下去一块。在大质量星体附近,我们可以看到这种空间弯曲的效应。广义相对论被世界承认正是通过爱丁顿在某次全日食时观测星光的偏移实验。星系或星系团的质量比单个恒星要大得多,可使周围使空间弯曲形成;引力透镜”,星系背

转载请注明:中小学优秀作文大全_作文模板_写作指导_范文大全 » 24世纪关于宇宙的想象作文 想象作文未来的宇宙