【 – 小学作文】
篇一:《勾股定理的十六种证明方法》
勾股定理的证明
【证法1】(课本的证明)
做8个全等的直角三角形,
设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.
从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即
11
a2b24abc24ab222
22, 整理得 abc.
【证法2】(邹元治证明)
以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角
1ab2形的面积等于. 把这四个直角三角形拼成如图所示形状,使A、E、B三点
在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上.
∵ RtΔHAE ≌ RtΔEBF,
∴ ∠AHE = ∠BEF.
∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o.
∴ 四边形EFGH是一个边长为c的
正方形. 它的面积等于c2. ∵ RtΔGDH ≌ RtΔHAE, ∴ ∠HGD = ∠EHA. ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o,
∴ ∠DHA = 90o+ 90o= 180o.
2
ab∴ ABCD是一个边长为a + b的正方形,它的面积等于.
∴
ab2
1
4abc2
222
2. ∴ abc.
【证法3】(赵爽证明) 以a、b 为直角边(b>a), 以c为斜
边作四个全等的直角三角形,则每个直角
1
ab2三角形的面积等于. 把这四个直角三
角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE,
∴ ∠HDA = ∠EAB.
∵ ∠HAD + ∠HAD = 90o, ∴ ∠EAB + ∠HAD = 90o, 2∴ ABCD是一个边长为c的正方形,它的面积等于c. ∵ EF = FG =GH =HE = b―a , ∠HEF = 90o.
2
ba∴ EFGH是一个边长为b―a的正方形,它的面积等于.
12
4abbac2
2∴ .
222
∴ abc. 【证法4】(1876年美国总统Garfield证明)
以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角
1ab
形的面积等于2. 把这两个直角三角形拼成如图所示形状,使A、E、B三点
在一条直线上.
∵ RtΔEAD ≌ RtΔCBE,
∴ ∠ADE = ∠BEC.
∵ ∠AED + ∠ADE = 90o, ∴ ∠AED + ∠BEC = 90o. ∴ ∠DEC = 180o―90o= 90o. ∴ ΔDEC是一个等腰直角三角形,
12c2它的面积等于.
又∵ ∠DAE = 90o, ∠EBC = 90o, ∴ AD∥BC.
1
ab2
∴ ABCD是一个直角梯形,它的面积等于2.
1
ab221ab1c2
22. ∴ 2
222
∴ abc.
【证法5】(梅文鼎证明)
做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P.
∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD, ∴ ∠EGF = ∠BED,
∵ ∠EGF + ∠GEF = 90°,
∴ ∠BED + ∠GEF = 90°,{勾股定理证明方法大全}.
∴ ∠BEG =180o―90o= 90o. 又∵ AB = BE = EG = GA = c,
∴ ABEG是一个边长为c的正方形. ∴ ∠ABC + ∠CBE = 90o.
∵ RtΔABC ≌ RtΔEBD,
∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90o. 即 ∠CBD= 90o. 又∵ ∠BDE = 90o,∠BCP = 90o,
BC = BD = a.
∴ BDPC是一个边长为a的正方形. 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则
11
c2S2aba2b2S2ab,
2, 2
222
∴ abc.
【证法6】(项明达证明)
做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上. 过点Q作QP∥BC,交AC于点P.
过点B作BM⊥PQ,垂足为M;再过点
F作FN⊥PQ,垂足为N. ∵ ∠BCA = 90o,QP∥BC, ∴ ∠MPC = 90o, ∵ BM⊥PQ, ∴ ∠BMP = 90o, ∴ BCPM是一个矩形,即∠MBC = 90o.
∵ ∠QBM + ∠MBA = ∠QBA = 90o,
∠ABC + ∠MBA = ∠MBC = 90o, ∴ ∠QBM = ∠ABC,
又∵ ∠BMP = 90o,∠BCA = 90o,BQ = BA = c, ∴ RtΔBMQ ≌ RtΔBCA.
同理可证RtΔQNF ≌ RtΔAEF. 从而将问题转化为【证法4】(梅文鼎证明).
【证法7】(欧几里得证明)
做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结 BF、CD. 过C作CL⊥DE,
交AB于点M,交DE于点
L.
K∵ AF = AC,AB = AD, ∠FAB = ∠GAD, ∴ ΔFAB ≌ ΔGAD, 12a∵ ΔFAB的面积等于2, ΔGAD的面积等于矩形ADLM 的面积的一半,
2
a∴ 矩形ADLM的面积 =. 同理可证,矩形MLEB的面积 =b.
∵ 正方形ADEB的面积 = 矩形ADLM的面积 + 矩形MLEB的面积 222222
∴ cab ,即 abc.
【证法8】(利用相似三角形性质证明)
如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D.
在ΔADC和ΔACB中, ∵ ∠ADC = ∠ACB = 90o, ∠CAD = ∠BAC, ∴ ΔADC ∽ ΔACB.
AD∶AC = AC ∶AB,
2
即 ACADAB. 2
同理可证,ΔCDB ∽ ΔACB,从而有 BCBDAB.
222222
∴ ACBCADDBABAB,即 abc.
2
【证法9】(杨作玫证明)
做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形. 过A作AF⊥AC,AF交GT于F,AF交DT于R. 过B作BP⊥AF,垂足为P. 过D作DE与CB的延长线垂直,垂足为E,DE交AF于H.
∵ ∠BAD = 90o,∠PAC = 90o, ∴ ∠DAH = ∠BAC. 又∵ ∠DHA = 90o,∠BCA = 90o, AD = AB = c,
∴ RtΔDHA ≌ RtΔBCA.
∴ DH = BC = a,AH = AC = b.
由作法可知, PBCA 是一个矩形, 所以 RtΔAPB ≌ RtΔBCA. 即PB = CA = b,AP= a,从而PH = b―a.
∵ RtΔDGT ≌ RtΔBCA ,
RtΔDHA ≌ RtΔBCA. ∴ RtΔDGT ≌ RtΔDHA .
∴ DH = DG = a,∠GDT = ∠HDA . 又∵ ∠DGT = 90o,∠DHF = 90o,
∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90o, ∴ DGFH是一个边长为a的正方形.
∴ GF = FH = a . TF⊥AF,TF = GT―GF = b―a .
∴ TFPB是一个直角梯形,上底TF=b―a,下底BP= b,高FP=a +(b―a). 用数字表示面积的编号(如图),则以c为边长的正方形的面积为
c2S1S2S3S4S5 ①
1
bbaabab21ab22, =
∵
S8S3S4
S5S8S9, ∴
把②代入①,得
S3S4b2
1
abS822= bS1S8 . ②
c2S1S2b2S1S8S8S9
222
= bS2S9 = ba. 222
∴ abc.
【证法10】(李锐证明)
设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c. 做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使A、E、G三点在一条直线上. 用数字表示面积的编号(如图).
∵ ∠TBE = ∠ABH = 90o, ∴ ∠TBH = ∠ABE.
R又∵ ∠BTH = ∠BEA = 90o,
BT = BE = b,
∴ RtΔHBT ≌ RtΔABE. ∴ HT = AE = a. ∴ GH = GT―HT = b―a.
又∵ ∠GHF + ∠BHT = 90o,
∠DBC + ∠BHT = ∠TBH + ∠
∴ ∠GHF = ∠DBC.
∵ DB = EB―ED = b―a,
∠HGF = ∠BDC = 90o,
∴ RtΔHGF ≌ RtΔBDC. 即 S7S2.
过Q作QM⊥AG,垂足是M. 由∠BAQ = ∠BEA = 90o,可知 ∠ABE
篇二:《勾股定理的8种证明方法》
勾股定理的8种证明方法
这个定理有许多证明的方法,其证明的方法可能是数学众多定理中最多的。路明思(Elisha Scott Loomis)的 Pythagorean Proposition( 《毕达哥拉斯命题》)一书中总共提到367种证明方式。
有人会尝试以三角恒等式(例如:正弦和余弦函数的泰勒级数)来证明勾股定理,但是,因为所有的基本三角恒等式都是建基于勾股定理,所以不能作为勾股定理的证明(参见循环论证)。
证法1
作四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过点C作AC的延长线交DF于点P.
∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,
∴ ∠EGF = ∠BED,
∵ ∠EGF + ∠GEF = 90°,
∴ ∠BED + ∠GEF = 90°,
∴ ∠BEG =180°―90°= 90°
又∵ AB = BE = EG = GA = c,
∴ ABEG是一个边长为c的正方形.
∴ ∠ABC + ∠CBE = 90° ∵ RtΔABC ≌ RtΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90° 即 ∠CBD= 90° 又∵ ∠BDE = 90°,∠BCP = 90°, BC = BD = a. ∴ BDPC是一个边长为a的正方形. 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则
a^2+b^2=c^2
证法2
作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.
过点Q作QP∥BC,交AC于点P.
过点B作BM⊥PQ,垂足为M;再过点 F作FN⊥PQ,垂足为N. ∵ ∠BCA = 90°,QP∥BC, ∴ ∠MPC = 90°, ∵ BM⊥PQ, ∴ ∠BMP = 90°, ∴ BCPM是一个矩形,即∠MBC = 90°. ∵ ∠QBM + ∠MBA = ∠QBA = 90°, ∠ABC + ∠MBA = ∠MBC = 90°, ∴ ∠QBM = ∠ABC, 又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c, ∴ RtΔBMQ ≌ RtΔBCA. 同理可证RtΔQNF ≌ RtΔAEF.即a^2+b^2=c^2
证法3{勾股定理证明方法大全}.
作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再作一个边长为c的正方形. 把它们拼成如图所示的多边形. 分别以CF,AE为边长做正方形FCJI和AEIG,
∵EF=DF-DE=b-a,EI=b,
∴FI=a,
∴G,I,J在同一直线上,
∵CJ=CF=a,CB=CD=c,
∠CJB = ∠CFD = 90°,
∴RtΔCJB ≌ RtΔCFD ,
同理,RtΔABG ≌ RtΔADE, ∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE ∴∠ABG = ∠BCJ, ∵∠BCJ +∠CBJ= 90°, ∴∠ABG +∠CBJ= 90°, ∵∠ABC= 90°, ∴G,B,I,J在同一直线上, a^2+b^2=c^2
证法4
作三个边长分别为a、b、c的三角形,把它们拼成如图所示形状,使H、
C、B三点在一条直线上,连结
BF、CD. 过C作CL⊥DE,
交AB于点M,交DE于点L.
∵ AF = AC,AB = AD,
∠FAB = ∠GAD,
∴ ΔFAB ≌ ΔGAD,
∵ ΔFAB的面积等于,
ΔGAD的面积等于矩形ADLM
的面积的一半, ∴ 矩形ADLM的面积 =. 同理可证,矩形MLEB的面积 =. ∵ 正方形ADEB的面积 = 矩形ADLM的面积 + 矩形MLEB的面积 ∴ 即a^2+b^2=c^2
证法5(欧几里得的证法)
《几何原本》中的证明
在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立。 设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边上的正方形。此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。
在正式的证明中,我们需要四个辅助定理如下:
如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS定理) 三角形面积是任一同底同高之平行四边形面积的一半。 任意一个正方形的面积等于其二边长的乘积。 任意一个四方形的面积等于
其二边长的乘积(据辅助定理3)。 证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形。
其证明如下:
设△ABC为一直角三角形,其直角为CAB。 其边为BC、AB、和CA,依序绘成四方形CBDE、BAGF和ACIH。 画出过点A之BD、CE的平行线。此线将分别与BC和DE直角相交于K、L。 分别连接CF、AD,形成两个三角形BCF、BDA。 ∠CAB和∠BAG都是直角,因此C、A 和 G 都是线性对应的,同理可证B、A和H。 ∠CBD和∠FBA皆为直角,所以∠ABD等于∠FBC。 因为 AB 和 BD 分别等于 FB 和 BC,所以△ABD 必须相等于△FBC。 因为 A 与 K 和 L是线性对应的,所以四方形 BDLK 必须二倍面积于△ABD。 因为
C、A和G有共同线性,所以正方形BAGF必须二倍面积于△FBC。 因此四边形 BDLK 必须有相同的面积 BAGF = AB^2。 同理可证,四边形 CKLE 必须有相同的面积 ACIH = AC^2。 把这两个结果相加, AB^2+ AC^2; = BD×BK + KL×KC 。由于BD=KL,BD×BK + KL×KC = BD(BK + KC) = BD×BC 由于CBDE是个正方形,因此AB^2 + AC^2= BC^2。 此证明是于欧几里得《几何原本》一书第1.47节所提出的
证法6(欧几里德(Euclid)射影定理证法)
如图1,Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,通过证明三角形相似则有射影定理如下:
1)(BD)^2;=AD·DC, (2)(AB)^2;=AD·AC , (3)(BC)^2;=CD·AC 。 由公式(2)+(3)得:
(AB)^2;+(BC)^2;=AD·AC+CD·AC =(AD+CD)·AC=(AC)^2;,
图1
即 (AB)^2;+(BC)^2;=(AC)^2,这就是勾股定理的结论。
证法七(赵爽弦图)
在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子:
4×(ab/2)+(b-a)2=c2
化简后便可得:
a2+b2=c2
亦即:
c=(a2+b2)(1/2)
勾股定理的别名 勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称。
我国是发现和研究勾股定理最古老的国家之一。我国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”因此,勾股定理在我国又称“商高定理”。在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日。
在法国和比利时,勾股定理又叫“驴桥定理”。还有的国家称勾股定理为“平方定理”。
在陈子后一二百年,希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理。为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”.
前任美国第二十届总统伽菲尔德证明了勾股定理(1876年4月1日)。 1 周髀算经, 文物出版社,1980年3月, 据宋代嘉定六年本影印,1-5页。
2. 陈良佐: 周髀算经勾股定理的证明与出入相补原理的关系. 刊於《汉学研究》, 1989年第7卷第1期, 255-281页。{勾股定理证明方法大全}.
3. 李国伟: 论「周髀算经」“商高曰数之法出于圆方”章. 刊於《第二届科学史研讨会汇刊》, 台湾, 1991年7月, 227-234页。
篇三:《勾股定理的16种证明方法》
篇四:《勾股定理16种经典证明方法》
勾股定理的证明
【证法1】(课本的证明)
做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.
从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即
11
a2b24abc24ab
22, 整理得 a2b2c2.
【证法2】(邹元治证明)
1
ab
以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于2. 把这四个直角三
角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上. ∵ RtΔHAE ≌ RtΔEBF,
∴ ∠AHE = ∠BEF.
∵ ∠AEH + ∠AHE = 90o,
∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o.
∴ 四边形EFGH是一个边长为c的
2
正方形. 它的面积等于c.
∵ RtΔGDH ≌ RtΔHAE, ∴ ∠HGD = ∠EHA.
∵ ∠HGD + ∠GHD = 90o,
∴ ∠EHA + ∠GHD = 90o.
又∵ ∠GHE = 90o,
∴ ∠DHA = 90o+ 90o= 180o.
2
ab∴ ABCD是一个边长为a + b的正方形,它的面积等于.
∴
【证法3】(赵爽证明) 以a、b 为直角边(b>a), 以c为斜 边作四个全等的直角三角形,则每个直角
ab2
1
4abc2
222
2. ∴ abc.
1ab2三角形的面积等于. 把这四个直角三
角形拼成如图所示形状.
∵ RtΔDAH ≌ RtΔABE, ∴ ∠HDA = ∠EAB.
∵ ∠HAD + ∠HAD = 90o, ∴ ∠EAB + ∠HAD = 90o,
2
∴ ABCD是一个边长为c的正方形,它的面积等于c.
1{勾股定理证明方法大全}.
– 1 –
∵ EF = FG =GH =HE = b―a , ∠HEF = 90o.
2
ba∴ EFGH是一个边长为b―a的正方形,它的面积等于.
12
4abbac2
2∴ .
∴ abc.
【证法4】(1876年美国总统Garfield证明)
2
2
2
1
ab2以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于. 把这两个直角三
角形拼成如图所示形状,使A、E、B三点在一条直线上.
∵ RtΔEAD ≌ RtΔCBE, ∴ ∠ADE = ∠BEC.
∵ ∠AED + ∠ADE = 90o, ∴ ∠AED + ∠BEC = 90o. ∴ ∠DEC = 180o―90o= 90o.
∴ ΔDEC是一个等腰直角三角形,
12c
它的面积等于2.
又∵ ∠DAE = 90o, ∠EBC = 90o, ∴ AD∥BC.
1
ab2
∴ ABCD是一个直角梯形,它的面积等于2.
1
ab221ab1c2
22. ∴ 2
∴ abc.
【证法5】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P.
∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD, ∴ ∠EGF = ∠BED,
∵ ∠EGF + ∠GEF = 90°,
∴ ∠BED + ∠GEF = 90°,
∴ ∠BEG =180o―90o= 90o. 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形. ∴ ∠ABC + ∠CBE = 90o.
∵ RtΔABC ≌ RtΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90o. 即 ∠CBD= 90o. 又∵ ∠BDE = 90o,∠BCP = 90o,
BC = BD = a. ∴ BDPC是一个边长为a的正方形. 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则
2
2
2
1
a2b2S2ab,
2 1
c2S2ab
2,
2
– 2 –
∴ abc.
【证法6】(项明达证明)
做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.
过点Q作QP∥BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点 F作FN⊥PQ,垂足为N.
∵ ∠BCA = 90o,QP∥BC,
∴ ∠MPC = 90o,
∵ BM⊥PQ,
∴ ∠BMP = 90o,
∴ BCPM是一个矩形,即∠MBC = 90o.
∵ ∠QBM + ∠MBA = ∠QBA = 90o, ∠ABC + ∠MBA = ∠MBC = 90o, ∴ ∠QBM = ∠ABC,
又∵ ∠BMP = 90o,∠BCA = 90o,BQ = BA = c,
∴ RtΔBMQ ≌ RtΔBCA. 同理可证RtΔQNF ≌ RtΔAEF. 从而将问题转化为【证法4】(梅文鼎证明). 【证法7】(欧几里得证明)
做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结 BF、CD. 过C作CL⊥DE,
交AB于点M,交DE于点 L.
∵ AF = AC,AB = AD, ∠FAB = ∠GAD, K∴ ΔFAB ≌ ΔGAD,
222
12
a2∵ ΔFAB的面积等于,
ΔGAD的面积等于矩形ADLM
的面积的一半,
∴ 矩形ADLM的面积 =a.
2
2
同理可证,矩形MLEB的面积 =b.
∵ 正方形ADEB的面积