最新消息:学生作文网,您身边的作文指导专家!

2016年成都市统计局 2016年楚雄州统计局

初中作文 zuowen 2浏览

【 – 初中作文】

篇一:《成都2016年各校招生班次与人数统计表》

成都2012年各校招生班次与人数统计表 2012年成都市各校高中2015级招生的汇总情况。

篇二:《2016年成都市中考集训6—概率与统计(1)》

2016年成都市中考集训–概率与统计(一)(8分-10分)

1.小华与小丽设计了A,B两种游戏:

游戏A的规则:用3张数字分别是2,3,4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字.若抽出的两张牌上的数字之和为偶数,则小华获胜;若两数字之和为奇数,则小丽获胜.

游戏B的规则:用4张数字分别是5,6,8,8的扑克牌,将牌洗匀后背面朝上放置在桌面上,小华先随机抽出一张牌,抽出的牌不放回,小丽从剩下的牌中再随机抽出一张牌.若小华抽出的牌面上的数字比小丽抽出的牌面上的数字大,则小华获胜;否则小丽获胜. 请你帮小丽选择其中一种游戏,使她获胜的可能性较大,并说明理由.

2. 一不透明纸箱中装有形状、大小、质地等完全相同的4个小球, 分别标有数字1,2,3,4.

(1)从纸箱中随机地一次取出两个小球,求这两个小球上所标的数字一个是奇数另一个是偶数的概率;

(2)先从纸箱中随机地取出一个小球,用小球上所标的数字作为十位上的数字;将取出的小球放回后,再随机地取出一个小球,用小球上所标的数字作为个位上的数字,则组成的两位数恰好能被3整除的概率是多少?试用树状图或列表法加以说明.

3.有一枚均匀的正四面体,四个面上分别标有数字1,2,3,4,小红随机地抛掷一次,把着地一面的数字记为x;另有三张背面完全相同,正面上分别写有数字-2,-1,1的卡片,小亮将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,把卡片正面上的数字记为y;然后他们计算出S=x+y的值.

(1)用树状图或列表法表示出S的所有可能情况; (2)分别求出当S=0和S<2时的概率.

4.某公司组织部分员工到一博览会的A、B、C、D、E五个展馆参观,公司所购门票种类、数量绘制成的条形和扇形统计图如图所示.

请根据统计图回答下列问题:

(1)将条形统计图和扇形统计图在图中补充完整;

(2)若A馆门票仅剩下一张,而员工小明和小华都想要,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四张牌洗匀后,背面朝上放置在桌面上,每人随机抽一次且一次只抽一张;一人抽后记下数字,将牌放回洗匀背面朝上放置在桌面上,再由另一人抽.若小明抽得的数字比小华抽得的数字大,门票给小明,否则给小华.” 请用画树状图或列表的方法计算出小明和小华获得门票的概率,并说明这个规则对双方是否公平.

5.某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容。规定:每位考生先在三个笔试题(题签分别用代码B1、B2、B3表示)中抽取一个,再在三个上机题(题签分别用代码J1、J2、J3表示)中抽取一个进行考试。小亮在看不到题签的情况下,分别从笔试题和上机题中随机地各抽取一个题签。 (1)用树状图或列表法表示出所有可能的结构;

(2)求小亮抽到的笔试题和上机题的题签代码的下标(例如“B1”的下表为“1”)均为奇数的概率。

6.某校将举办“心怀感恩·孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.

(1)本次调查抽取的人数为_______,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为_______;

(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.

7.“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下:{2016年成都市统计局}.

请根据上表提供的信息,解答下列问题: (1)表中的x的值为_______,y的值为________

(2)将本次参赛作品获得A等级的学生依次用A1,A2,A3,"表示,现该校决定从本次参赛作品中获得A等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生A1和A2的概率.

8.第十五届中国“西博会”将于2014年10月底在成都召开,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.

(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;

(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2、3、4、5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.

9、国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球文化,我市某区在中小学举行了“足球在身边”知识竞赛活动,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题: (1)求获得一等奖的学生人数;

(2)在本次知识竞赛活动中,A,B,C,D四所学校表现突出, 现决定从这四所学校中随机选取两所学校举行一场足球友谊赛. 请使用画树状图或列表的方法求恰好选到A,B两所学校的概率. 二等奖

20%一等奖

三等奖

优胜奖 40%

篇三:《2016年成都市中考集训6—概率与统计(3)–附答案》

成都市中考集训–概率与统计(三)(8分-10分)

1、如图,有两个可以自由转动的均匀转盘A、B,转盘A被均匀地分成4等份,每份分别标上1、2、3、4四个数字;转盘B被均匀地分成6等份,每份分别标上1、2、3、4、5、6六个数字.有人为甲、乙两人设计了一个游戏,其规则如下:

(1)同时自由转动转盘A与B;

(2)转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数作乘积,如果得到的积是偶数,那么甲胜;如果得到的积是奇数,那么乙胜(如转盘A指针指向3,转盘B指针指向5,3×5=15,按规则乙胜).你认为这样的规则是否公平?请说明理由;如果不公平,请你设计一个公平的规则,并说明理由.

2、一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.

(1)求摸出1个球是白球的概率;

(2)摸出1个球,记下颜色后放回,并搅均,再摸出1个球.求两次摸出的球恰好颜色不同的概率(要求画树状图或列表);

(3)现再将n个白球放入布袋,搅均后,使摸出1个球是白球的概率为5/7.求n的值.

3、在平面直角坐标系xOy中,直线y=-x+3与两坐标轴围成一个△AOB.现将背面完全 相同,正面分别标有数l、2、3、11、的5张卡片洗匀后,背面朝上,从中任取一张,将 23

该卡片上的数作为点P的横坐标,再在剩下的4张卡片中任取一张,将该卡片上的数作为 点P的纵坐标.

(1)请用树状图或列表求出点P的坐标.

(2)求点P落在△AOB内部的概率.

4、有一个可自由转动的转盘,被分成了4个相同的扇形,分别标有数1,2,3,4(如图所示),另有一个不透明的口袋装有分别标有数0,1,3的三个小球(除数不同外,其余都相同),小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积.

(1)请你用画树状图或列表的方法,求这两个数的积为0的概率;

(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平.

5、甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后, 发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚 不完整的统计图表.

(1)在图1中,“7分”所在扇形的圆心角等于 °.{2016年成都市统计局}.

(2)请你将图2的统计图补充完整.

(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.

(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中

乙校成绩条形统计图 的一所挑选参赛选手,请你分析,应选哪所学校? 图2

6、小国同学的父亲参加旅游团到某地旅游,准备买某种礼物送给小国.据了解,沿旅游线路依次有A、B、C三个地点可以买到此种礼物,其质量相当,价格各不相同,但不知哪家更便宜.由于时间关系,随团旅游车不会掉头行驶.

(1)若到A处就购买,写出买到最低价格礼物的概率;

(2)小国同学的父亲认为,如果到A处不买,到B处发现比A处便宜就马上购买,否则到C处购买,这样更有希望买到最低价格的礼物.这个想法是否正确?试通过树状图分析说明.

7、完全相同的4个小球,上面分别标有数字1、-1、2、-2,将其放入一个不透明的盒子中摇匀,再从中随机摸球两次(第一次摸出后不放回).把第一次、第二次摸到的球上标.........

有的数字分别记作m、n,以m、n分别作为一个点的横坐标与纵坐标,求点(m,n)在.第二象限的概率.(用树状图或列表法求解)

8、为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:

(1)求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;

(2)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.

9、如图,暑假快要到了,某市准备组织同学们分别到A,B,C,D四个地方进行夏令营活动,前往四个地方的人数.

(1)去B地参加夏令营活动人数占总人数的40%,根据统计图求去B地的人数?

(2)若一对姐弟中只能有一人参加夏令营,姐弟俩提议让父亲决定.父亲说:现有4张卡片上分别写有1,2,3,4四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机地抽取一张.若抽取的两张卡片上的数字之和是5的倍数则姐姐参加,若抽取的两张卡片上的数 字之和是3的倍数则弟弟参加.用列表法或树形图分析这种方法对姐弟俩是否公平?

篇四:《2016年成都市中考集训6—概率与统计(3)》

2016年成都市中考集训–概率与统计(三)(8分-10分)

1、如图,有两个可以自由转动的均匀转盘A、B,转盘A被均匀地分成4等份,每份分别标上1、2、3、4四个数字;转盘B被均匀地分成6等份,每份分别标上1、2、3、4、5、6六个数字.有人为甲、乙两人设计了一个游戏,其规则如下:

(1)同时自由转动转盘A与B;

(2)转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数作乘积,如果得到的积是偶数,那么甲胜;如果得到的积是奇数,那么乙胜(如转盘A指针指向3,转盘B指针指向5,3×5=15,按规则乙胜).你认为这样的规则是否公平?请说明理由;如果不公平,请你设计一个公平的规则,并说明理由.

2、一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.

(1)求摸出1个球是白球的概率;

(2)摸出1个球,记下颜色后放回,并搅均,再摸出1个球.求两次摸出的球恰好颜色不同的概率(要求画树状图或列表);

(3)现再将n个白球放入布袋,搅均后,使摸出1个球是白球的概率为5/7.求n的值.

3、在平面直角坐标系xOy中,直线y=-x+3与两坐标轴围成一个△AOB.现将背面完全 相同,正面分别标有数l、2、3、11、的5张卡片洗匀后,背面朝上,从中任取一张,将 23

该卡片上的数作为点P的横坐标,再在剩下的4张卡片中任取一张,将该卡片上的数作为 点P的纵坐标.

(1)请用树状图或列表求出点P的坐标.

(2)求点P落在△AOB内部的概率.

4、有一个可自由转动的转盘,被分成了4个相同的扇形,分别标有数1,2,3,4(如图所示),另有一个不透明的口袋装有分别标有数0,1,3的三个小球(除数不同外,其余都相同),小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积.

(1)请你用画树状图或列表的方法,求这两个数的积为0的概率;

(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平.

5、甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后, 发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚 不完整的统计图表.

(1)在图1中,“7分”所在扇形的圆心角等于 °.

(2)请你将图2的统计图补充完整.

(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.

(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中

乙校成绩条形统计图 的一所挑选参赛选手,请你分析,应选哪所学校? 图2

{2016年成都市统计局}.

6、小国同学的父亲参加旅游团到某地旅游,准备买某种礼物送给小国.据了解,沿旅游线路依次有A、B、C三个地点可以买到此种礼物,其质量相当,价格各不相同,但不知哪家更便宜.由于时间关系,随团旅游车不会掉头行驶.

(1)若到A处就购买,写出买到最低价格礼物的概率;

(2)小国同学的父亲认为,如果到A处不买,到B处发现比A处便宜就马上购买,否则到C处购买,这样更有希望买到最低价格的礼物.这个想法是否正确?试通过树状图分析说明.

7、完全相同的4个小球,上面分别标有数字1、-1、2、-2,将其放入一个不透明的盒子中摇匀,再从中随机摸球两次(第一次摸出后不放回).把第一次、第二次摸到的球上标.........

有的数字分别记作m、n,以m、n分别作为一个点的横坐标与纵坐标,求点(m,n)在.第二象限的概率.(用树状图或列表法求解)

8、为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:

(1)求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;

(2)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.

9、如图,暑假快要到了,某市准备组织同学们分别到A,B,C,D四个地方进行夏令营活动,前往四个地方的人数.

(1)去B地参加夏令营活动人数占总人数的40%,根据统计图求去B地的人数?

(2)若一对姐弟中只能有一人参加夏令营,姐弟俩提议让父亲决定.父亲说:现有4张卡片上分别写有1,2,3,4四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机地抽取一张.若抽取的两张卡片上的数字之和是5的倍数则姐姐参加,若抽取的两张卡片上的数 字之和是3的倍数则弟弟参加.用列表法或树形图分析这种方法对姐弟俩是否公平?

篇五:《2016年成都市中考集训6—概率与统计(1)–附答案》

成都市中考集训–概率与统计(一)(8分-10分)

1.小华与小丽设计了A,B两种游戏:

游戏A的规则:用3张数字分别是2,3,4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字.若抽出的两张牌上的数字之和为偶数,则小华获胜;若两数字之和为奇数,则小丽获胜.

游戏B的规则:用4张数字分别是5,6,8,8的扑克牌,将牌洗匀后背面朝上放置在桌面上,小华先随机抽出一张牌,抽出的牌不放回,小丽从剩下的牌中再随机抽出一张牌.若小华抽出

转载请注明:中小学优秀作文大全_作文模板_写作指导_范文大全 » 2016年成都市统计局 2016年楚雄州统计局